Siderite: Universal poperies
We've all seen constructions satisfying a universal property these are bet t explained by examples:

Examples
(1) Inducts $\left\{M_{i}\right\}_{i \in I}$ collection of R-modules the product of the $\left\{\mathrm{H}_{i}\right\}_{i \in I}$ is the R-module

$$
\pi_{i \in I} M_{i}=\left\{\left(m_{i}\right)_{i \in I}: \quad m_{i} \in M_{i}\right\}
$$

with the following universal property:
given an R-module N and R-module homomorphisms $N \xrightarrow{f_{i}} M_{i}$ there exits a unique R-module homomowrophusm f such that

commutes for all $j \in I$
where $\pi_{j}: \pi_{i \in I} M_{i} \rightarrow M_{j}$ is the projection onto the j th factor Slogan Mapping into a product \Leftrightarrow mapping into each factor
(2) Direct sum $\left\{M_{i}\right\}_{i \in I}$ collection of R-modules the direct sum of the $\left\{M_{i}\right\}_{i \in I}$ is the R-module

$$
\underset{i \in I}{\oplus} M_{i}=\left\{\left(m_{i}\right)_{i \in I}: m_{i} \in M_{i}, \quad m_{j}=0 \text { for all but frutely many } j\right\}
$$

With the following universal property:
given an R-module N and R-module homomorphisms $M_{i} \xrightarrow{f_{i}} N$
there exits a unique R-module homomowrophesm such that

commutes for all $j \in I$
where $l_{j}: M_{j} \rightarrow \oplus_{i \in I} M_{i}$ is the unchesion of the j th factor Slogan Mapping out of a direct sum \Leftrightarrow mapping out of each factor

Note when I is fence, $\pi_{i \in I} M_{i}=\underset{i \in I}{\oplus} M_{i}$ and we may write $M_{1} \times \ldots \times M_{n}$ (direct pasduct) $M_{1} \oplus \ldots \oplus M_{n} \quad$ (direct sum)

When I is infinite, the constructions are different.

Free R-module the free R-module on $\left\{b_{i}\right\}_{i \in I}$ is the R-module F with the following universal property: given an R-module M and a function $f: I \longrightarrow M$, there exists a unique R-module homomorphism $\hat{f}: F \rightarrow M$ such that
commutes

a, $\hat{f}\left(b_{i}\right)=f(i)$.
We say F is the free module on I (or $\left\{b_{i}\right\}_{i \in I}$) and $\left\{b_{i}\right\}$ is called a basis.

Slogan to define a map out I a free module is to define any function (of sets) on the basis elements

Real slogan The basis elements form an actual basis (there are no relations between them, and they generate F) We saw in the Winter that $F \cong \bigoplus_{i \in I} R=R^{\oplus I}$ or R^{I}

Product (category theory) F category
$\left\{M_{i}\right\}_{i \in I}$ a collection of objects in \mathcal{F}, indexed by a set I the product of $\left\{M_{i}\right\}_{i \in I}$ is the object $\pi M_{i \in I}$ together with avows $\pi_{i \in I} M_{i} \xrightarrow{\pi_{j}} M_{j}$ with the following uneressal property:
given anows $N \xrightarrow{f_{i}} M_{i}$ there exits a unique anow f
such that

$$
N-\underline{f} \rightarrow \prod_{i \in I}^{\pi} M_{i}
$$

Examples

- The product in R-mod is the product of modules.
- In Top, the product of topological spaces is the set product with the Tychonoff topology
(with the basis of open sets $\prod_{i \in I} u_{i} \subseteq \prod_{i \in I} x_{i}$ where $u_{i}=x_{i}$ for all but freely money i, all u_{i} open
- If I is a partially adored set, when we vow I as a category we have products $=$ greatest bower bounds
- In Frelds, there is no $Q \times \mathbb{Z}$

Epposduct (category theory) F category
$\left\{M_{i}\right\}_{i \in I}$ a collection q objects in \mathcal{F}, indexed by a set I the coproduct of $\left\{M_{i}\right\}_{i \in I}$ is the object $\underset{i \in I}{ } M_{i}$ together with arrows $M_{j} \xrightarrow{l_{j}} \underset{i \in I}{ } M_{i}$ wi th the following uneressal property:
given anows $M_{i} \xrightarrow{f_{i}} N$ there exits a unique know f
such that

$$
N \stackrel{f}{\leftarrow}
$$

Examples

- In R-mod, the coproduct is the direct sum
- In set, the coppoduct is the despent union of sets
- In Gp, the coproduct is the free product
- If I is a partially ordered set, and we vow it as a category, coproducts $=$ least upper bound

Tree object (category theory)
(Concrete category)
Let $\overparen{\sigma}$ be a category with a faithful functor $F: \odot \rightarrow$ Set Let x be a set
the free object on x is an object A in \mathcal{F} together with an ungechive function of sets $x \xrightarrow{i} F(A)$ that sategfes the following universal property:
for any shagect B in \mathcal{B} and any function of sets $x \xrightarrow{f} F(B)$ there exists a unique now $A \xrightarrow{g} B$ such that

Example In R-mod, free modules

When we talk about adjoint functor:
a forgetful functor to set has a left adjoint that is the fee functor.

Universal property (formal offnetion)
G bialy small category
A universal property for an eject C in B consists It:

- a representable functor $F: \mathcal{F} \rightarrow$ set
- a universal element $x \in F(C)$ such that
F is naturally voomouphec to

$$
\begin{aligned}
& \text { Hemp }_{G}(c,-) \\
& \operatorname{Hom}_{G}(-, c)
\end{aligned}
$$

via the natural no conesponding to x by the Yoneda byection

Example the universal popperty of the product $x_{1} \times x_{2}$ is encoded in

- the representable functor $\operatorname{Hom}_{G \times P}\left(\Delta(-),\left(x_{1}, x_{2}\right)\right)$
- represented by $X_{1} \times X_{2}$
- vara $\left(\pi_{1}, \pi_{2}\right) \in \operatorname{Hom} G \times \xi\left(\Delta\left(x_{1} \times x_{2}\right),\left(x_{1}, x_{2}\right)\right)$
where

$$
\begin{array}{rlr}
\Delta: Q & \rightarrow & \mathcal{B} \times \mathcal{Q} \\
x & & (x, x) \\
f \downarrow & I(f, f) \\
y & & (y, y)
\end{array}
$$

Unwrapping this, et says:

$$
\operatorname{Hom}_{G}\left(-, x_{1} \times x_{2}\right) \cong \operatorname{Hom}_{G \times p_{G}}\left(\Delta(-),\left(x_{1}, x_{2}\right)\right)
$$

ry the natural isomouphemn φ given by

$$
\begin{aligned}
& \operatorname{Hom}_{G}\left(y, x_{1} \times x_{2}\right) \stackrel{\varphi_{y}}{\longrightarrow} \operatorname{Hom}_{\sigma_{x} p_{G}}\left(\Delta(y),\left(x_{1}, x_{2}\right)\right) \\
& f \Delta(f)^{*}\left(\pi_{1}, \pi_{2}\right) \\
& i d_{y} \\
& \varphi_{y}(f)=\left(g_{1}, g_{2}\right) \text { means }
\end{aligned}
$$

Commutes
φ_{y} is a byection
\Rightarrow for every g_{1}, g_{2} there exits a unique f such that the diagram commutes.
(that's the universal property of the product!)

Back to R-mod:
$\operatorname{Hom}_{R}(M,-)$ and are additive functor $R-\bmod \rightarrow R-\bmod$ $\mathrm{Hom}_{R}(-, N)$
theorem there are natural esomerphoms

$$
\begin{aligned}
& \operatorname{Hom}_{R}\left(M, \pi N_{i}\right) \cong \underset{i}{\pi} \operatorname{Hom}_{R}\left(M, N_{i}\right) \\
& \operatorname{Hom}_{R}\left(\underset{i}{\oplus} M_{i}, N\right) \cong \underset{i}{\oplus} \operatorname{Hom}_{R}\left(M_{i}, N_{i}\right)
\end{aligned}
$$

$T: R-\bmod \rightarrow S-\bmod$ covamant additive functor

- T is left exact if
$0 \rightarrow A \rightarrow B \rightarrow C$ exact $\Rightarrow 0 \rightarrow T(A) \rightarrow T(B) \rightarrow T(C)$ exact
- T is rught exact if
$A \rightarrow B \rightarrow C \rightarrow 0$ exact $\Rightarrow T(A) \rightarrow T(B) \rightarrow T(C) \rightarrow 0$ exact
- T is exact if

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \text { ses } \Rightarrow 0 \rightarrow T(A) \rightarrow T(B) \rightarrow T(C) \rightarrow 0
$$

$T: R-\bmod \rightarrow S-\bmod \quad$ contravamant additive functor

- T is left exact if
$A \rightarrow B \rightarrow C \rightarrow 0$ exact $\Rightarrow 0 \rightarrow T(C) \rightarrow T(B) \rightarrow T(A)$ exact
- T is right exact if
$0 \rightarrow A \rightarrow B \rightarrow C \Rightarrow T(C) \rightarrow T(B) \rightarrow T(A) \rightarrow 0$ exact
- T is exact if
$0 \rightarrow T(C) \rightarrow T(B) \rightarrow T(A) \rightarrow 0$ exact

Remark:
Equivalently, ne can stent with a ses in all the conditions

- deft exact $=$ turns kernels into kernels (cokennels)
- Right exact $=$ turns cokernels into cokernols (kennels)
- Exact $=$ Left exact + rught exact
(contravariant)
theorem (Hor is left exact)
- For every short exact sequence

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

and ever R-module M,

$$
0 \rightarrow \operatorname{Hom}_{R}(M, A) \xrightarrow{f_{*}} \operatorname{Hom}_{R}(M, B) \xrightarrow{g_{*}} \operatorname{Hom}_{R}(M, C)
$$

is exact

- For every short exact sequence

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

and every R-module M,

$$
0 \rightarrow \operatorname{Hom}_{R}(M, C) \xrightarrow{g^{*}} \operatorname{Hom}_{R}(M, B) \xrightarrow{f^{*}} \operatorname{Hom}_{R}(M, A)
$$

is exact

Proof Covariant version:
(1) f_{*} is infective

Let $h \in \operatorname{Hom}_{R}(M, A)$.

$$
f_{*}(h)=0 \Longleftrightarrow f \circ h=0 \underset{f \text { mono }}{\text { fimgective }} h=0
$$

(2) imp $f_{*} \subseteq \operatorname{ker} g_{*}$

For all $h \in \operatorname{Hom}_{R}(M, A), \quad g_{*} f_{*}(h)=\underbrace{g \circ f}_{=0} \cdot h=0$
(3) $\operatorname{ken} g_{*} \subseteq \operatorname{im} f_{*}$ $\operatorname{det} h \in \operatorname{Hom}_{R}(M, B), \quad g_{*}(h)=0 \Leftrightarrow g \circ h=0$ For all $m \in M, \quad g(h(m))=0 \Rightarrow h(m) \in \operatorname{ker} g=i m f$ Choose $a \in A$ such that $f(a)=h(m)$, and set

$$
k(m):=a
$$

- f unective \Rightarrow for each m unique $a \Rightarrow k$ is well-defined
- Exercise: $k \in \operatorname{Hom}_{R}(M, A)$
- $f_{*}(k)$ satesfes $f_{*}(k)(m)=f(k(m))=f(a)=h(m)$

$$
\Rightarrow f_{*}(k)=R
$$

Warning How is not rught exact in general

Example $0 \rightarrow \mathbb{Z} \xrightarrow{\imath} \mathbb{Q} \xrightarrow{\pi} \mathbb{Q} / \mathbb{Z} \rightarrow 0$

$$
\Downarrow \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / 2,-)
$$

$$
0 \rightarrow \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / 2, \mathbb{Z}) \xrightarrow{i_{*}} \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / 2, \mathbb{Q}) \xrightarrow{\pi_{*}} \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / 2, \mathbb{Q} / \mathbb{Z})
$$

Claim π_{*} not suyectre

- $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / 2, Q)=0 \quad(1 \longmapsto a, \quad 2 a=0 \Rightarrow a=0)$
- $\mathrm{Hom}_{\mathbb{Z}}(\mathbb{Z} / 2, \mathbb{Q} / \mathbb{Z}) \neq 0$
$1 \longmapsto \frac{1}{2}+\mathbb{Z}$ is de!
so actually, our exact sequence is

$$
0 \rightarrow 0 \rightarrow 0 \rightarrow \frac{\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / 2, Q / \mathbb{Z})}{\cong \mathbb{Z} / 2}
$$

Abs, when we apply $\operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{Z})$, we get

$$
0 \rightarrow \underbrace{\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z})}_{=0} \stackrel{{ }^{*}}{\operatorname{Hom}_{\mathbb{Z}}(Q, \mathbb{Z}}) \xrightarrow{f^{*}} \underbrace{\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z}}_{\mathbb{Z}})
$$

$\Rightarrow f^{*}$ rot suyectre!

