Regular rungs (R, m, k) regular back rung if dum (R)=d and $\mu(m)=d$

theorem (Auslander - Buchsbaum, Sene)
(R, m, K) Noetheran local rung of dim d. TFAE:
1 pdim_R(K) < ∞
2 pdim_R(H) < ∞ for all fg R-module M
3 m is generated by a regular sequence
(B, m, k) regular ball rung

A rung R is regular if Rz is regular for every pume I Idea Germetucally, think about varieties of dumension d that embed on A^d (so very rice and smooth)

· Every regular local rung is a domain

• R RLR \implies pdum_R(k) = dum(R)

• every $\mathbb{P}ID$ is a rogular rung • \mathbb{R} rogular back rung $\Longrightarrow \mathbb{R}_{\mathbb{P}}$ rogular Example $\mathbb{R} = \mathbb{P}[\mathcal{U}_{1}, \mathcal{I}_{n}]$ is a rogular rung

R negular (S Every fg R-module has frute polym (S dim R)

Cohen stucture theorem R Noetherian local rung then $\hat{R} \cong Q/I$ for some sugular local rung Q