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Chapter 1

Systems of Equations

1.1 What is Linear Algebra?

Linear algebra is the study of linear equations.

Definition 1.1. A linear equation in the variables x1, x2, . . . , xn is an equation that can
be written in the form:

a1x1 + a2x2 + · · ·+ anxn = b

where a1, . . . , an, b are constants (real numbers). The constant ai is the coefficient of xi,
and b is the constant term.

Example 1.2.

a) The equation
2x1 − 5x2 + 2 = −x1

is a linear equation, as it is equivalent to the equation

3x1 − 5x2 = −2.

b) The equation
x2 = 2(

√
6− x1) + x3

is also a linear equation: note that

x2 = 2(
√
6− x1) + x3 ⇐⇒ 2x1 + x2 − x3 = 2

√
6.

c) The equation
x1x2 = 6

is not a linear equation.

d) The equation
x1 + log x2 − x3 = 2

is not a linear equation.

e) The equation
x21 = 7

is not a linear equation.

1
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In this class, we will study systems of linear equations:

Definition 1.3. A system of linear equations or linear system is a collection of one or
more linear equations. A solution to a system of equations in the variables x1, . . . , xn is a
list s = (s1, . . . , sn) of numbers that satisfy every equation in the system, meaning that if we
replace x1 by s1, x2 by s2, and so on, then we obtain a true equality.

The solution set of a system is the set of all possible solutions.

Example 1.4.

a) The system of linear equations {
x1 = 4

2x1 + x2 = 0

has one solution, the point (4,−8). The solution set is {(4,−8)}, which is how we
denote the set that has only one element (4,−8).

b) The system of linear equations {
x1 = 4

x1 = 7

is impossible, and it has no solutions. The solution set is the empty set ∅.

c) The solution set of the equation
x1 − x2 = 0

is a line:

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x1

x2

We will later explain why the following holds:

Important

In general, a system of linear equations may have:

• No solutions,

• Exactly one solution, or

• Infinitely many solutions.

But it can never have a finite number of solutions greater than one.
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Definition 1.5. Two systems of linear equations in the same variables x1, . . . , xn are equiv-
alent if they have the same solution set.

To study linear systems of equations, we keep replacing our system by an equivalent
system, until the solution set becomes easy to find. To do this, we will use matrices.

Definition 1.6. An m× n (read m by n) matrix is a rectangular array of numbers with m
rows and n columns.

Example 1.7. The following is a 2× 3 matrix:[
2 5 0
7 −3 13

]
.

Definition 1.8. A system of linear equations
a11x1 + · · ·+ a1nxn = b1

...

am1x1 + · · ·+ amnxn = bm

has coefficient matrix A and constant vector b below:

A =

a11 · · · a1n
...

. . .
...

am1 · · · amn

 and b =


b1
b2
...
bm

 .
The augmented matrix of the system is

[
A|b

]
=

a11 · · · a1n b1
...

. . .
...

...
am1 · · · amn bm

 also written

 a11 · · · a1n b1
...

. . .
...

...
am1 · · · amn bm

 .
Sometimes we will write Ax = b to refer to the system in a more compact way.

Remark 1.9. In the coefficient matrix for a system of linear equations,

number of rows = number of equations
number of columns = number of variables.

In contrast, the augmented matrix always has exactly one extra column.

Example 1.10. Given the system {
3x1 + x2 = 5

2x1 − x3 = 6

has coefficient matrix

[
3 1 0
2 0 −1

]
and augmented matrix

[
3 1 0 5
2 0 −1 6

]
.
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How do we solve systems of linear equations?

Theorem 1.11. Any system of linear equations can be solved using the following elementary
row operations on the augmented matrix:

1. Replace: Replace one row by the sum of itself and a multiple of another row.

2. Swap: Swap two rows.

3. Scale: Multiply all entries of a row by a nonzero constant.

How does this work in practice?

Example 1.12. Let us take the first step in resolving the following system of linear equations:
x1 − 2x2 + x3 = 0

2x2 − 8x3 = 8

5x1 − 5x3 = 10.
x1 − 2x2 + x3 = 0

2x2 − 8x3 = 8

10x2 − 10x3 = 10.

1 −2 1 0
0 2 −8 8
5 0 −5 10


1 −2 1 0
0 2 −8 8
0 10 −10 10


Replace

R3 → R3 − 5R1

��

Old R3 5 0 −5 10
−5R1 + −5 10 −5 0
New R3 0 10 −10 10

Definition 1.13. We say two n×m matrices A and B are row equivalent if there exists a
finite sequence of row operations that converts A into B. We will write A ∼ B to say that A
and B are equivalent.

Example 1.14. The calculation we did in Example 1.12 shows that1 −2 1 0
0 2 −8 8
5 0 −5 10

 ∼

1 −2 1 0
0 2 −8 8
0 10 −10 10

 .
Remark 1.15. Row operations are always reversible. If matrix A is row equivalent to B,
then B is also row equivalent to A. So if we write A ∼ B, it is also true that B ∼ A.

Theorem 1.16. If the augmented matrices of two linear systems are row equivalent, then the
systems have the same solution set.

In other words, if the augmented matrices are row equivalent, then the corresponding
linear systems are equivalent. We use this idea to solve systems of linear equations: we keep
performing row operations until we have a simpler system we can solve.
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Example 1.17. Consider the linear system below, and its augmented matrix:
2x2 − 8x3 = 8

x1 − 2x2 = 0

5x1 − 5x3 = 10

0 2 −8
1 −2 0
5 0 −5

8
0
10

 .
Let us row reduce step by step:0 2 −8

1 −2 0
5 0 −5

8
0
10

 R1↔R2−−−−−→

1 −2 0
0 2 −8
5 0 −5

0
8
10


R2→

1
2
R2

−−−−−−→
R3→ 1

5
R3

1 −2 0
0 1 −4
1 0 −1

0
4
10


R3→R3−R1−−−−−−−→

1 −2 0
0 1 −4
0 2 −1

0
4
10


R3→R3−2R2−−−−−−−−→

1 −2 0
0 1 −4
0 0 7

0
4
2

 .
This system is now in triangular form, which is sufficient to allow us to find the solutions

by back substitution: we see that
7x3 = 2,

so

x3 =
2

7
.

We can now substitute this back in the second equation to obtain

x2 = 4x3 + 4 =
8

7
+ 4 =

36

7

and substituting into the first equation gives us

x1 = 2x2 =
72

7
.

The solution set is {
(
72
7
, 36

7
, 2
7

)
}.

The big question is how to apply elementary row operations efficiently. This is where
Gauss Elimination will come in.



6

1.2 Gaussian Elimination and Row Echelon form

Definition 1.18. Given a matrix, the leading entry of a particular row is the first nonzero
entry in that row (from the left).

Definition 1.19. A rectangular matrix is in row echelon form if:

• Any rows consisting entirely of zeros are at the bottom.

• The leading entry of each nonzero row is to the right of the leading entry of the row
above.

• All entries below a leading entry (in the same column) are zero.

Example 1.20. In each of the matrices below, we circled the leading entries.

1) The matrix 
2 −3 0 1

0 1 −4 8

0 0 0 1
3

0 0 0 0


is in echelon form.

2) The matrix [
2 −3

1 4

]
is not in echelon form. (The leading entries are below each other!)

3) The matrix [
0 3
1 0

]
is not echelon form. (The rows should be switched!)

4) The matrix  1 3 −3
0 0 0

0 3 4


is not in echelon form. (The second row should be at the bottom!)

Definition 1.21. A matrix is in reduced row echelon form (RREF) if it is in row
echelon form and:

• The leading entry in each nonzero row is 1.

• Each leading 1 is the only nonzero entry in its column.
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Remark 1.22. A typical matrix in RREF has the following format:

· · · 0 1 ⋆ 0 ⋆ 0 · · · 0 ⋆ ⋆
· · · 0 0 0 1 ⋆ 0 · · · 0 ⋆ ⋆
· · · 0 0 0 0 0 1 · · · 0 ⋆ ⋆
...

...
...

...
...

...
... · · · ...

...
...

0 · · · 0 0 0 0 0 · · · 1 ⋆ ⋆
if there are zero rows
they are at the bottom


Example 1.23. In each of the matrices below, we circled the leading entries.

a) The matrix 
2 −3 0 1

0 1 −4 8

0 0 0 1
3

0 0 0 0


is in row echelon form, but not in reduced row echelon form.

b) The matrix  1 −3 0 1

0 1 4 8

0 0 0 1


is in row echelon form, but not reduced.

c) The matrix  2 0 0 0

0 1 0 −4

0 0 1 0


is in echelon form, not reduced.

d) The matrix  1 0 0 29

0 1 0 36

0 0 1 7


is in reduced row echelon form.

Definition 1.24. A pivot position in a matrix, often shortened to pivot, is a position that
corresponds to a leading 1 in the reduced echelon form of the matrix. A pivot column is a
column that contains a pivot position.

Remark 1.25. Important note: a pivot is a position, not a value.
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Example 1.26. The matrix

A =

1 −2 1 0
0 2 −8 8
5 0 −5 10


has RREF

B =

1 0 0 1
0 1 0 0
0 0 1 −1

 .
We can see the pivots easily from the RREF B:

B =

 1 0 0 1

0 1 0 0

0 0 1 −1

 .
Thus its pivot columns are the first three columns, and we can easily mark the pivots in A:

A =


1 −2 1 0

0 2 −8 8

5 0 −5 10

 .
Theorem 1.27. Each matrix is row equivalent to one and only one matrix in reduced echelon
form.

However, while the reduced echelon form is unique, note that there are many different
paths to the reduced echelon form.

Important

To solve a linear system of equations, we are going to:

1. Write out the augmented matrix corresponding to the system.

2. Get the augmented matrix in row reduced echelon form.

Remember: there is only one possible row reduced echelon form.

3. Read the solution to the system from the row reduced echelon form.

To get the augmented matrix in row reduced echelon form, we will use an algorithm
known as Gauss Elimination, or sometimes also called Gauss–Jordan Elimination.
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Algorithm 1.28 (Gaussian Elimination). To get a matrix into reduced row echelon form:

0. Start with the leftmost nonzero column. This will be the first pivot column, with a
pivot at the very top.

1. Choose a nonzero entry in this pivot column; swap rows if needed to move it into the
top position, and do nothing if the pivot is already in place. From this point on, we
will not switch this row with another ever again.

2. Use row operations to eliminate all other entries in this pivot column.

3. Move (right) to the next pivot column and repeat.

4. Scale pivot rows so that each pivot is 1. This can be done together with the previous
steps, or all together at the end.

5. Eliminate all entries above each pivot.

Example 1.29. Let us solve the following system of linear equations:
x1 − x2 + x3 = 2

2x1 − 2x2 + 3x3 = 5

−x1 + x2 − 2x3 = −3.

First, we write the augmented matrix of the system: 1 −1 1
2 −2 3
−1 1 −2

2
5
−3

 .
Since the first column is nonzero, that will be our first pivot column, with a pivot on the
first row. Luckily, the top entry of the first column is already nonzero, so the first row is not
going anywhere.

The next step is to eliminate the rest of the first column using the first row: 1 −1 1
2 −2 3
−1 1 −2

2
5
−3

 R2→R2−2R1−−−−−−−−→

 1 −1 1
0 0 1
−1 1 −2

2
1
−3

 R3→R3+R1−−−−−−−→

1 −1 1
0 0 1
0 0 −1

2
1
−1

 .
Where is the next pivot column? To identify it, we need to now ignore the first row and
find the next column with nonzero elements in another row. Since the second column has all
zeroes outside of the first row, the next pivot column is actually the third column. So now
we use the second row to zero out everything below the pivot in the third column.1 −1 1

0 0 1
0 0 −1

2
1
−1

 R3→R3+R2−−−−−−−→

1 −1 1
0 0 1
0 0 0

2
1
0


This matrix is now in row echelon form, and the pivot positions already have all 1s, but the
matrix is not in RREF yet. To achieve that, we need to clear the entries above the pivots too.1 −1 1

0 0 1
0 0 0

2
1
0

 R1→R1−R2−−−−−−−→

1 −1 0
0 0 1
0 0 0

1
1
0

 .
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Thus the RREF is 1 −1 0 1
0 0 1 1
0 0 0 0

 .
In fact, we have circled the pivots below: 1 −1 1 2

2 −2 3 5
−1 1 −2 −3

 ∼

 1 −1 0 1

0 0 1 1
0 0 0 0

 .
Now that we know how to apply Gauss Elimination, how will we read the solutions from

the row reduced echelon form of the augmented matrix?

Example 1.30. The system {
x1 = 4

2x1 + x2 = 0

has augmented matrix [
1 0 4
2 1 0

]
.

Applying the elementary row operation R2 7→ R2 − 2R1, we see that its reduced row echelon
form is [

1 0 4
0 1 −8

]
.

This means that {
x1 = 4

x2 = −8

and so (4,−8) is only solution.

The key point that made the previous example easy is that every column corresponding
to one of the variables x1, . . . , xn has a pivot. But this will not happen in general.

Discussion 1.31 (How to read the solutions from the RREF?). Consider the columns of
the augmented matrix corresponding to each of the variables x1, . . . , xn, and ignore the
last column (corresponding to the constant vector). The columns without pivots give us
free variables, meaning that these are variables that can take any value. Each choice of
values for the free variables will correspond to one solution to the system, because they
impose conditions on the variables that are not free. We might call the variables that are not
free leading variables. We then write an expression for the remaining variables (leading
variables) depending on the free variables.

Important

Once we obtain the RREF of a system:

• Columns without pivots among x1, . . . , xn correspond to free variables.

• Free variables can take arbitrary values.

• Each choice of free variables gives one solution to the system.
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Example 1.32. We saw in Example 1.29 that the augmented matrix of the system
x1 − x2 + x3 = 2

2x1 − 2x2 + 3x3 = 5

−x1 + x2 − 2x3 = −3.

has RREF 1 −1 0 1
0 0 1 1
0 0 0 0

 .
The second column has no pivot, so x2 is a free variable. The columns corresponding to the
variables x1 and x3 have pivots, so they are not free. This means we can write x1 and x3 in
terms of the free variable x2: looking at our system, which has now been reduced to

x1 − x2 = 1

x3 = 1

0 = 0

we get
x1 = 1 + x2 and x3 = 1.

The variable x2 can take any value, say x2 = t, where t is a parameter that varies. The
solutions to the system are all the points of the form

(1 + t, t, 1)

where t can take any value. The solution set is

{(1 + t, t, 1) | t any real value}.

Example 1.33. Suppose the RREF of the augmented matrix of a system is 1 0 2 −1 4
0 1 −3 2 −7
0 0 0 0 0

 .
Then x3 and x4 are free variables, while x1 and x2 are not. To write down all solutions, we
need to let the free variables take any values possible. Setting x3 = s and x4 = t, where s
and t are now parameters that will vary over all real numbers, we get

x1 = 4− 2s+ t,

x2 = −7 + 3s− 2t.

So the solution set is
{(4−2s+t, −7+3s−2t, s, t) | s, t ∈ R}.
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Given a system of linear equations, rather than finding the solution set we might just
want to know the answers to the following questions:

• Does the system have at least one solution?

• If a solution exists, is it unique? Meaning, does the system have only one solution, or
infinitely many?

Definition 1.34. A system of linear equations is:

• Consistent if it has at least one solution.

• Inconsistent if it has no solutions.

Remark 1.35. A consistent linear system might have one solution or infinitely many solutions.

Theorem 1.36 (Consistency Criterion). A linear system of equations is inconsistent if and
only if the reduced echelon form of its augmented matrix has a pivot in the last column.

Remark 1.37. A simpler way to say this: a system is inconsistent if the RREF has a row of
the form

[0 0 · · · 0 | 1].
Example 1.38. The system with augmented matrix[

1 3 5 7
0 0 0 42

]
is inconsistent: we can see that the second row corresponds to the impossible equation 0 = 42.
We can also check the system is inconsistent by seeing that the reduced echelon form is[

1 3 5 0
0 0 0 1

]
which has a pivot on the last column.

In summary:

Important

To determine how many solutions a system has, look at the reduced row echelon form of
the augmented matrix:

• Pivot in the last column =⇒ inconsistent system, no solutions.

• No pivot in the last column, no free variables =⇒ exactly one solution.

• No pivot in the last column, some free variables =⇒ infinitely many solutions.

Pivot in last column Yes Yes No No

Free variables Yes No No Yes

Number of solutions 0 0 1 ∞
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Pivot in
last column?

No
Solutions

Solutions

Free variables?

One solution Infinitely many
Solutions

Ye
s No

No
Yes

Example 1.39.

a) The system whose augmented matrix has reduced row echelon form[
1 3 5
0 0 0

]
has a free variable (x2) and no pivot in the last column, so it has infinitely many
solutions. In fact, the solution set is

{(5− 3t, t) | t ∈ R} .

b) The system whose augmented matrix has reduced row echelon form[
1 3 0
0 0 1

]
has a free variable (x2) and a pivot in the last column, so it no solutions.

c) The system whose augmented matrix has reduced row echelon form[
1 0 0
0 1 3

]
has no free variables and no pivot in the last column, so it has exactlty one solution.

In fact, the unique solution is (0, 3), so the solution set is {(0, 3)}.
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1.3 The geometry of the solution set of a linear system

of equations

Discussion 1.40 (One equation in two variables). The solution set of one linear equation in
two variables

a1x1 + a2x2 = b

is typically a line, except:

• If a1 = a2 = 0 and b ̸= 0, the system is inconsistent, as it is equivalent to the equation

0 = b,

which is false. The solution set is the empty set ∅.

• If a1 = a2 = b = 0, the system is equivalent to

0 = 0

and the solution set is the entire plane R2.

Discussion 1.41 (Two equations in two variables). What is the solution set of a system of
two linear equations in two variables? Consider the system{

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

where a11 and a12 are not both zero, and a21 and a22 are not both zero. Each equation
determines a line, so the solution set to this system of equations is the intersection of two
lines. This can be:

• A point (one solution),

• A line (infinitely many solutions),

• The empty set (no solution, i.e. if the two lines are parallel).

Example 1.42.

a) The system of equations {
x1 = x2

x1 + x2 = 2

has one solution: the solution set is {(1, 1)}. If we were to represent this geometrically,
we only draw one point.

b) The system of equations {
x1 − x2 = 2

x1 − x2 = 0

has no solutions: the solution set is the empty set ∅. (The two lines corresponding to
each equation are parallel!)
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c) The system of equations {
x1 = x2

x1 + x2 = 2

has infinitely many solution: the solution set is a whole line. A fancy mathematical
way to indicate that line is

{(x1, x2) | x1 − 2x2 = −1}.

Example 1.43 (Planes in three dimensions). A linear equation in three variables, such as

x+ y + z = 0

determines a plane in three-dimensional space. The solution to a system of linear equations
in three variables such as 

3x− y + z = 0

2x+ y + 2z = 2

x+ 4y − 2z = 11

is the intersection of the three planes corresponding to each equation.



Chapter 2

Vectors

2.1 Introduction to vectors

Definition 2.1. A vector is a matrix with only one column, that is, an n× 1 matrix

v =

v1...
vn

 .
The real number v1 is the first component of v, and vi is the ith component of v.

We write Rn for the set of all vectors with n components in the real numbers. The zero
vector in Rn is the vector whose entries are all zero:

0 =

0...
0

 in Rn.

Discussion 2.2. R2 is a two-dimensional plane, when we think of the point (a, b) in the

plane as corresponding to the vector

[
a
b

]
:

x

y

(2, 1) ⇝

[
2
1

]

When we represent our vector with its tail at the origin, we say the vector is in standard
position. We might also represent a vector with its head at point A = (a1, . . . , an) and its
tail at point B = (b1, . . . , bn), in which case the vector is

v =

b1 − a1
...

bn − an

 .
16
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Definition 2.3. We can sum vectors:u1...
un

+

v1...
vn

 =

u1 + v1
...

un + vn

 .
We can also multiply vectors by scalars (real numbers):

c ·

u1...
un

 =

c u1...
c un

 .
Example 2.4.

a)

[
2
3

]
+

[
8
7

]
=

[
10
10

]
. b) 2 ·

[
1
2

]
=

[
2
4

]
.

Remark 2.5. Here is a geometric visualization of sums (parallelogram rule):

u

v
v

u

u
+
v

Here is a geometric visualization of scalar multiples:

u 2u

Theorem 2.6 (Properties of vector operations). For all vectors u, v, w ∈ Rn and scalars c, d:

1. u+ v = v + u

2. (u+ v) + w = u+ (v + w)

3. u+ 0 = 0 + u = u

4. u+ (−u) = −u+ u = 0

5. c(u+ v) = cu+ cv

6. (c+ d)u = cu+ du

7. c(du) = (cd)u

8. 1u = u

Definition 2.7. Let v be a vector in Rn. The length or norm of v is the nonnegative real
number

∥v∥ :=
√
v21 + · · ·+ v2n.
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Remark 2.8. If we identify the vector v =

v1...
vn

 with the point (v1, . . . , vn) in n-dimensional

space, the norm of v is the length of the line segment between that point and the origin.

v

len
gt
h
of
v

Theorem 2.9. If v is a vector in Rn and c is any scalar, ∥cv∥ = |c| · ∥v∥.
Definition 2.10. A vector in Rn whose length is 1 is called a unit vector.

We can always find a unit vector with the same direction as a given vector v by normalizing v:

Definition 2.11. Let v ̸= 0 be a vector in Rn. The normalization of v is the unit vector
v

∥v∥
which has the same direction as v.

v v

normalization of v

The most important unit vectors are the standard unit vectors:

Definition 2.12. The ith standard basis vector in Rn is the unit vector

ei =



0
...
0
1
0
...
0


position i

Notation 2.13. In R3, one sometimes writes i, j, and k for the standard basis vectors:

i =

10
0

 = e1 j =

01
0

 = e2 k =

00
1

 = e3.
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2.2 Linear combinations

Definition 2.14. Given vectors v1, . . . , vp and scalars c1, . . . , cp, the vector

c1v1 + · · ·+ cpvp

is a linear combination of v1, . . . , vp with coefficients c1, . . . , cp.

Remark 2.15. What does this look like geometrically? Here is a depiction of the linear
combinations of v1 and v2:

v1

v2

v1

v2

2v2

−v1
v1 − 2v2

Any point on the plane determined by v1 and v2 is a linear combination of v1 and v2.

Remark 2.16. Note that any vector in Rn can be written as a linear combination of the
standard vectors e1, . . . , en: the vector v ∈ Rn is

v = v1e1 + · · ·+ vnen.

A typical question we would like to answer is the following: given vectors v1, . . . , vp, b ∈ Rn,
is b a linear combination of v1, . . . , vp?

Discussion 2.17. Given vectors v1, . . . , vp, b ∈ Rn, b is a linear combination of v1, . . . , vp if
and only if the vector equation

x1v1 + · · ·+ xpvp = b

has solutions. This vector equation has the same solutions as the linear system with augmented
matrix [

v1 · · · vp b
]
.

Example 2.18. Is

 7

4

−3

 a linear combination of

 1

−2

−5

 and

25
6

?
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Solution: We are asking if the system

x1

 1
−2
−5

+ x2

25
6

 =

 7
4
−3


has a solution; equivalently, whether the linear system with augmented matrix[

1 2 7
−2 5 4
−5 6 −3

]
is consistent (= has solutions). We see that 1 2 7

−2 5 4
−5 6 −3

 R2→R2+2R1−−−−−−−−→
R3→R3+5R1

1 2 7
0 9 18
0 16 32

 R2→
1
9
R2

−−−−−−→

1 2 7
0 1 2
0 16 32


R1→R1−2R2−−−−−−−−−→

1 0 3
0 1 2
0 16 32

 R3→R3−16R2−−−−−−−−−→

1 0 3
0 1 2
0 0 0

 (reduced row echelon form).

No pivots in the last column ⇒ the system is consistent.
Answer: yes.
In fact, if we wanted to find an explicit way of writing our vector as a linear combination

of the other two, all we need is a solution to the system. From the RREF, we see that there
is a unique solution (no free variables!), given by (3, 2). Thus

3

 1
−2
−5

+ 2

25
6

 =

 7
4
−3

 .
Definition 2.19 (Span). Let v1, . . . , vp be vectors in Rn. The set of all linear combinations
of v1, . . . , vp is the span of v1, . . . , vp, written

span ({v1, . . . , vp}) = {c1v1 + · · ·+ cpvp | ci ∈ R}.

Example 2.20.

a) span

{[
0
0

]}
=

{[
0
0

]}
. b) span

{[
1

0

]}
=

{[
a

0

]
: a any value

}
.

Remark 2.21. Note that for any vector v ∈ Rn,

span{v} = {λv | λ ∈ R}

is the set of all scalar multiples of v.

Example 2.22. Is

 7

4

−3

 in span


 1

−2

−5

 ,
25
6

? According to Example 2.18, yes.

Example 2.23. Let u, v be vectors in R3, both nonzero. If u is a scalar multiple of v, then
span{u, v} = span{u} is a line. Otherwise, span{u, v} is a plane!
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2.3 Matrix Equations

Definition 2.24 (Matrix-vector multiplication). Let A be an m× n matrix and consider a
vector x ∈ Rn. The product Ax is the vector in Rm given by

Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



x1
x2
...
xn

 = x1


a11
a21
...
am1

+ x2


a12
a22
...
am2

+ · · ·+ xn


a1n
a2n
...

amn



=


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 .
We might shorten this by setting the columns of A to be a1, . . . , an, so that we can write

Ax = x1a1 + · · ·+ xnan.

This indicates a linear combination of the columns of A with coefficients x1, . . . , xn.

Remark 2.25. For the product Ax of a matrix A with a vector x to be defined, we need the
number of columns of A to match the number of rows of the vector x.

Notation 2.26. Given a system of linear equations
a11x1 + · · ·+ a1nxn = b1

...

am1x1 + · · ·+ amnxn = bm

with coefficient matrix A and constant vector b, we can write our system in matrix notation

Ax = b

where

x =


x1
x2
...
xn


a vector of variables.

Remark 2.27. The matrix equation Ax = b has the exact same solution set as the vector
equation x1a1 + · · ·+ xnan = b and as the linear system with augmented matrix[

A | b
]
=

[
a1 · · · an | b

]
.
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Example 2.28. The linear system {
x1 + 3x2 = 4

−x1 + x2 = 1

has augmented matrix [
1 3 4
−1 1 1

]
and can be written as a matrix equation as follows:[

1 3
−1 1

] [
x1
x2

]
=

[
4
1

]
or equivalently x1

[
1
−1

]
+ x2

[
3
1

]
=

[
4
1

]
.

Remark 2.29. The system Ax = b has a solution if and only if b is a linear combination of
the columns of A.

Theorem 2.30. Fix an m× n matrix A. The following are equivalent:

a) The system Ax = b has a solution for every vector b ∈ Rm.

b) Every vector b ∈ Rm is a linear combination of the columns of A.

c) The columns of A span Rm.

d) The coefficient matrix A has a pivot in every row.

Remark 2.31. The last statement is about A itself, the coefficient matrix of the system,
and not an augmented matrix.

Example 2.32. The matrix

A =

[
1 0 0
0 0 1

]
has a pivot in every row. Hence the equation Ax = b has solutions for every b ∈ R2. Indeed,

span

{[
1
0

]
,

[
0
0

]
,

[
0
1

]}
= R2.

Theorem 2.33 (Properties of matrix-vector products). Let c be a scalar, let u, v ∈ Rn, and
let A be an m× n matrix. Then

A(u+ v) = Au+ Av and A(cu) = c(Au).
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2.4 Homogeneous linear systems of equations

Definition 2.34. A linear system is homogeneous if we can write it as

Ax = 0.

Remark 2.35. A homogeneous system always has a solution, x = 0. This is called the
trivial solution. A solution x ̸= 0 is called nontrivial.

Remark 2.36. Given a homogeneous system Ax = 0, the system has a nontrivial solution if
and only if the system has at least one free variable.

Example 2.37. Consider the homogeneous linear system
3x1 + 5x2 − 4x3 = 0

−3x1 − 2x2 + 4x3 = 0

6x1 + x2 − 8x3 = 0.

This can be written in matrix notation as 3 5 −4

−3 −2 4

6 1 −8


︸ ︷︷ ︸

A

x1x2
x3


︸ ︷︷ ︸

x

=

00
0


︸︷︷︸

b

(this is a homogeneous system).

We can solve this system by finding the reduced row echelon form of the augmented
matrix [A |b]. Since b = 0, row operations on A and on [A | 0] are the equivalent, and the
augmented matrix does not add any new information. So it is sufficient to find the by finding
the reduced row echelon form of A.

 3 5 −4 0
−3 −2 4 0
6 1 −8 0

 R2→R2+R1−−−−−−−→

 3 5 −4 0
0 3 0 0
6 1 −8 0

 R3→R3−2R1−−−−−−−−→

 3 5 −4 0
0 3 0 0
0 −9 0 0


R2→

1
3
R2

−−−−−−→

 3 5 −4 0
0 1 0 0
0 −9 0 0

 R1→R1−5R2−−−−−−−−→

 3 0 −4 0
0 1 0 0
0 −9 0 0

 R3→R3+9R2−−−−−−−−→

 3 0 −4 0
0 1 0 0
0 0 0 0


R1→ 1

3
R1

−−−−−→

 1 0 −4
3

0
0 1 0 0
0 0 0 0

 .
From the reduced row echelon form we see that

x3 is free, x1 =
4
3
x3, and x2 = 0.
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Hence the solution set is

x =

x1x2
x3

 = x3

4
3

0

1

 (a one parameter family; nontrivial solutions occur when x3 ̸= 0).

The general solution to our system is

x3

4
3

0

1

 or t

4
3

0

1


where t is a parameter that can take any real value. The trivial solution comes from choosing
t = 0. Each choice of t ̸= 0 gives a nontrivial particular solution: for example, taking t = 1
gives the solution 4

3

0

1

 .
Remark 2.38. In summary, the general solution to a homogeneous system is a linear
combination of vectors, with the free variables as coefficients. The general solution, when
written in this format, is said to be in parametric vector form.

Definition 2.39. A nonhomogeneous linear system is a linear system of the form

Ax = b for some b ̸= 0.

Theorem 2.40. The general solution to the nonhomogeneous system Ax = b is

x = one particular solution + general solution to the homogeneous system Ax = 0.

Remark 2.41. Theorem 2.40 says that the solution set of the nonhomogeneous system
Ax = b is obtained by translating the solution set for Ax = 0 by a vector corresponding to
one particular solution to Ax = b.

For example, suppose that the general solution to Ax = 0 is x = tv, where the parameter
t can take the value of any real number, and v ∈ Rn is any nonzero vector; note that x = tv
is a line with direction v. Then the general solution to Ax = b is

x = tv + p for some vector p.

Geometrically, this corresponds to a line parallel to v, but that goes through the point
corresponding to p.

solutions to Ax = 0

tv

solutions to Ax = b
p+ tv

p
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Remark 2.42. Here are some useful geometric rules: given u, v ∈ Rn,

• Parametric equation of the line through u parallel to v:

x = u+ tv, t ∈ R.

• Parametric equation of the line through u and v:

x = u+ t(v − u), t ∈ R.

Example 2.43. Consider the system 3 5 −4
−3 −2 4
6 1 8

x =

 7
1
−4

 .
The reduced row echelon form of the augmented matrix is 1 0 −4

3
−1

0 1 0 2
0 0 0 0

 .
Thus the general solution to the system is

x = x3

4
3

0

1

+

−1

2

0

 , which is in parametric vector form.

Important

To write the solution set of a consistent system:

1) Row-reduce the augmented matrix into reduced echelon form.

2) Write each non-free variable in terms of the free ones.

3) Write the general solution x as a vector whose entries depend on the free variables
(if there are free variables).

4) Decompose this as a linear combination of vectors where each coefficient is a free
variable (plus possibly one term with coefficient 1 for a particular solution).

Example 2.44. Let us find the general solution to the linear system with augmented matrix 0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15

 .
and write the solution in parametric vector form.
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Solution. First, one uses Gauss Elimination to see that the augmented matrix has reduced
echelon form  1 0 −2 3 0 −24

0 1 −2 2 0 −7
0 0 0 0 1 4

 .
From the RREF, we see that the free variables are x3 and x4. So the general solution is

x3, x4 are free variables

x1 = 2x3 − 3x4 − 24,

x2 = 2x3 − 2x4 − 7,

x5 = 4.

Let x =


x1
x2
x3
x4
x5

. Setting x3 = x4 = 0 gives us the particular solution

x =


−24

−7

0

0

4

 .
Now we can write the general solution in parametric vector form:

x = x3


2

2

1

0

0

+ x4


−3

−2

0

1

0


︸ ︷︷ ︸

general solution of the homogeneous system

+


−24

−7

0

0

4


︸ ︷︷ ︸

particular solution

.

We close this section with an important warning:

Important

Caution! Given a linear system Ax = b, there is a big difference between

the coefficient matrix A and the augmented matrix
[
A b

]
.

• Is the system Ax = b consistent? =⇒ look at the augmented matrix.

• The system Ax = 0 is always consistent.

We can solve the system by focusing only on A and then finding a particular solution,
but if we do so we must remember A is not the augmented matrix of the system.
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2.5 Linear Independence

Definition 2.45. A set of vectors {v1, . . . , vp} in Rn is linearly independent if the vector
equation

x1v1 + · · ·+ xpvp = 0

has only the trivial solution x1 = · · · = xp = 0. We say that v1, . . . , vp are linearly independent
or that the set {v1, . . . , vp} is linearly independent.

A set of vectors {v1, . . . , vp} in Rn is linearly dependent if there exist scalars c1, . . . , cp,
not all zero, such that

c1v1 + · · ·+ cpvp = 0.

Given such c1, . . . , cp, the equation

c1v1 + · · ·+ cpvp = 0.

is called a relation of linear dependence among v1, . . . , vp. We say that v1, . . . , vp are
linearly dependent or that the set {v1, . . . , vp} is linearly dependent.

Remark 2.46. Equivalently, {v1, . . . , vp} is linearly independent if and only if

c1v1 + · · ·+ cpvp = 0 =⇒ c1 = · · · = cp = 0.

Remark 2.47. The singleton set {v} is linearly independent ⇐⇒ v ̸= 0.

Example 2.48.

[
1

0

]
and

[
0

0

]
are linearly dependent: for example, we can take

0

[
1

0

]
+ 2

[
0

0

]
.

More generally:

Theorem 2.49. Any set of vectors in Rn that contains the zero vector is linearly dependent.

Why? Because we can always take any nonzero coefficient for the zero vector and 0 for
the coefficients of all the (nonzero) vectors.

Example 2.50.

[
1

0

]
and

[
2

0

]
are linearly dependent, since one is a scalar multiple of the

other. Indeed,

2

[
1

0

]
+ (−1)

[
2

0

]
= 0

is a relation of linear dependence.

In fact, more generally, any two nonzero vectors that are scalar multiples of each other
form a linearly dependent set.
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Example 2.51. If v is any nonzero vector and t ≠ 1, then v and tv are linearly dependent,
since

t · v + (−1) · (tv) = 0,

and the coefficients t and −1 are not both zero. Thus any two nonzero vectors that are scalar
multiples of each other form a linearly dependent set.

Remark 2.52. A set {v1, . . . , vp} of two or more vectors is linearly dependent if and only if
one of the vectors is a linear combination of the others. However, note that this does not say
that every vi is a linear combination of the rest.

Example 2.53.

{[
1

0

]
,

[
1

1

]
,

[
2

2

]}
is linearly dependent, since

[
2

2

]
= 2

[
1

1

]
.

However, note that

[
1

0

]
is not a linear combination of the other two vectors.

Remark 2.54. An equation of linear dependence among the vectors v1, . . . , vn is a nontrivial
solution to the homogeneous system

x1v1 + · · ·+ xnvn = 0.

Thus to decide if the vectors v1, . . . , vn are linearly independent, we consider the matrix

A =

[ |
v1
|

· · ·
|
vn
|

]
whose columns are the vectors v1, . . . , vn, and ask whether the system Ax = 0 has a nontrivial
solution. The vertical lines above are just for visual effect, as a reminder that each vi is a
vector; the correct way to write this is

A =
[
v1 · · · vn

]
.

In summary:

Theorem 2.55. The columns of a matrix A are linearly independent if and only if the
homogeneous system Ax = 0 has only the trivial solution.

The homogeneous system Ax = 0 has only the trivial solution if and only if the augmented
matrix [A | 0] of the homogeneous system Ax = 0 has no free variables. Thus we can check
whether a set of vectors is linearly independent by looking at the RREF of a matrix with
those vectors as columns:

Theorem 2.56. Consider the matrix

A =
[
v1 · · · vn

]
.

The column vectors v1, . . . , vn are linearly independent if and only if A has a pivot in every
column.
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Example 2.57. Consider the vectors

v1 =

12
3

 , v2 =

45
6

 , v3 =

21
0

 .
Question. Are v1, v2, and v3 linearly independent? linearly independent?
Solution. Consider the homogeneous system whose coefficient matrix has columns v1, v2,
and v3:  1 4 2 0

2 5 1 0
3 6 0 0

 ∼

 1 0 −2 0
0 1 1 0
0 0 0 0

 .
There is one free variable, so the system has nontrivial solutions. Hence the vectors are
linearly dependent.

Question. How do we find a linear dependence relation among v1, v2, and v3?
Solution. From the reduced row echelon form, we see that

general solution:


x3 free

x1 = 2x3

x2 = −x3
In parametric vector form: x = t

 2
−1

1

 .
To get a particular solution, we can take for example t = 1, giving us

x =

 2
−1

1

 .
Remember: these are the coefficients in our relation of linear dependence. This gives us the
following relation of linear dependence:

2

12
3

− 1

45
6

+ 1

21
0

 =

00
0

 .

Theorem 2.58. Any set of more than n vectors in Rn is linearly dependent.

Note that if we have more than n vectors in Rn, it is not possible for the matrix with
those vectors as columns to have a pivot in every column.

Example 2.59. Using Theorem 2.58, we can see immediately that

v1 =

12
3

 , v2 =

45
6

 , v3 =

78
9

 , and v3 =

1011
12


are linearly dependent, since we have 4 vectors in R3.
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2.6 Matrix Transformations

Definition 2.60 (Matrix transformation). Any m × n matrix A determines a function
T: Rn → Rm as follows: for each vector x ∈ Rn,

T(x) = Ax.

Such a function is called a matrix transformation.

Remark 2.61. Helpful visual aid: the matrix A gives a function T: R# columns −→ R# rows.

Example 2.62. The matrix

A =

 1 −3

3 5

−1 7


determines the function T: R2 → R3 given by T(x) = Ax. For example,

T

([
3

0

])
=

 1 −3
3 5
−1 7

[3
0

]
=

 3

9

−3

 .
and

T

([
1
−1

])
=

 1 −3
3 5
−1 7

[ 1
−1

]
=

 2 + 3

6− 5

−2− 7

 =

 5

1

−9

 .
Example 2.63. Consider the transformation T: R2 → R2 given by T(x) = Ax, where

A =

[
1 0

0 1

]
.

Note that for all values of x1 and x2,

T

([
x1
x2

])
=

[
1 0

0 1

][
x1
x2

]
=

[
x1
x2

]
.

This is the identity map! And in fact, the matrix

[
1 0

0 1

]
is called the identity matrix.

Notation 2.64 (Identity matrix). The n× n matrix

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


is the n× n identity matrix.

Example 2.65. The 3× 3 identity matrix is

I3 =

1 0 0
0 1 0
0 0 1

 .
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2.7 Linear transformations

Definition 2.66 (Linear transformation). A function T: Rn → Rm is a linear transforma-
tion if for all vectors u, v ∈ Rn and all scalars c,

T(u+ v) = T(u) + T(v) and T(c u) = c T(u).

Theorem 2.67 (Properties of linear transformations). If T is a linear transformation, then

a) T(0) = 0.

b) T(c1u+ c2v) = c1T(u) + c2T(v) for all scalars c1 and c2 and all vectors u and v.

It turns out that every linear transformation is actually a matrix transformation.

Theorem 2.68. A function T : Rn → Rm is a linear transformation if and only if it is a
matrix transformation, meaning that there exists a matrix A such that

T(x) = Ax for all x ∈ Rn.

To find this matrix A, we do the following:

Definition 2.69 (Standard matrix of a linear transformation). Let e1, . . . , en be the standard
basis of Rn. Given a linear transformation T: Rn → Rm, consider the matrix

A =
[
T(e1) · · · T(en)

]
.

The matrix A is called the standard matrix of T and it satisfies

T(x) = Ax for all x ∈ Rn.

Remark 2.70. Let us check that the standard matrix of a linear transformation does what
we claim it does. Suppose that T is a linear transformation with standard matrix A. Given
any vector x ∈ Rn, we saw earlier that we can decompose x into its components and write it
as a linear combination of the standard basis elements:

x =

x1· · ·
xn

 = x1e1 + · · ·+ xnen.

Then
T(x) = T(x1e1 + · · ·+ xnen)

x1T(e1) + · · ·+ xn T(en) since T is a linear transformation

= Ax since the T(ei) are the columns of A.

This shows that T is in fact a matrix transformation, with associated matrix A.

Let us see some examples.
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Example 2.71 (Dilation in R2). Let us find the standard matrix for the dilation T: R2 → R2

given by
T(x) = 2x.

It is not hard to check that this is indeed a linear transformation. Since

T(e1) =

[
2
0

]
and T(e2) =

[
0
2

]
we conclude that the standard matrix for this linear transformation is

A =

[
2 0
0 2

]
.

Example 2.72. Generalizing what we saw in Example 2.63, the standard matrix for the
identity function Rn → Rn is the identity matrix.

Example 2.73 (Rotation in the plane). Consider the function T: R2 → R2 that rotates each
point counterclockwise by an angle θ (in radians).

T(e1)
T(e2)

ψ

ψ

e1

e2

Then using trigonometry, one can show that

T

([
1
0

])
=

[
cos θ
sin θ

]
and T

([
0
1

])
=

[
− sin θ
cos θ

]
.

and thus the standard matrix for this linear transformation is[
cos θ − sin θ

sin θ cos θ

]
.

We conclude that

T

([
x1
x2

])
=

[
cos θ − sin θ

sin θ cos θ

] [
x1
x2

]
.
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Example 2.74. Consider the matrix transformation T: R2 → R2 given by T(x) = Ax, where

A =

[
1 0

0 −1

]
.

Note that T

([
a
b

])
=

[
a
−b

]
. Geometrically,

x

y
(a, b)

(a,−b)

This is the reflection across the x-axis.

Example 2.75 (Geometric description in R3). Let us give a geometric description of the
matrix transformation with standard matrix

A =

1 0 0

0 1 0

0 0 0

 .

Note that T

xy
z

 =

xy
0

. Geometrically,

x

y

z

(x, y, z)

(x, y, 0)

This is the orthogonal projection of R3 onto the xy-plane.

Example 2.76. Consider the linear transformation T: R2 → R2 that does the following:

Note how we explicitly marked the images of e1 and e2. This is sufficient for us to find
the standard matrix, and thus to completely describe the linear transformation: the matrix is[

1 −1
1 1

]
.
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2.8 Injective and surjective maps

Definition 2.77. A function T: Rn → Rm has domain Rn and codomain Rm.

Informally, the domain is the set of all inputs, and the codomain is the set of all possible
outputs, whether or not they are actual outputs. Saying the codomain is Rm means that all
the outputs are vectors in Rm, but not that every vector in Rm can be obtained as a specific
output.

Example 2.78 (In a picture). We can visualize T as mapping the “domain box” to the
“codomain box”:

Rn Rm

T

Here is a visual depiction of an input x going to an output b:

Rn Rm

T
x

b

Definition 2.79 (Image or range). The image or range of a function T: Rn → Rm is

im(T) := {T(x) | x ∈ Rn } ⊆ Rm.

Definition 2.80 (Surjective function). Let T : Rn → Rm be a function. We say T is
surjective if for every b ∈ Rm there exists at least one x ∈ Rn such that T(x) = b.
Equivalently, T is surjective if im(T) = Rm, meaning the image is the entire codomain. Some
authors also use the word onto.

Example 2.81. A function is not surjective if im(T ) is a proper subset of Rm.

Rn Rm

im(T )
T not surjective since

im(T ) ̸= Rm

Definition 2.82 (Injective function). Let T: Rn → Rm be a function. We say T is injective
if for each b ∈ Rm there exists at most one x ∈ Rn such that T(x) = b. Equivalently,

T(x1) = T(x2) =⇒ x1 = x2.
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Remark 2.83. Some authors use the word one-to-one to refer to injective functions, but
that can lead to some ambiguity, so we will avoid those words.

Remark 2.84 (In a picture). A function is not injective if two different inputs map to the
same output.

Rn Rm

not injective since
T (x) = b = T (y) and x ̸= yx

y
b

T

Definition 2.85. A function T: Rn → Rm is bijective if it is both injective and surjective.

We are of course interested specifically in the case where our function is a linear transfor-
mation.

Remark 2.86. Injectivity and surjectivity ae different properties. A linear map T : Rn → Rm

can be
• injective but not surjective,

• surjective but not injective,

• bijective (both injective and surjective),

• or neither injective nor surjective.

Example 2.87 (Identity on R2 is bijective). Let T: R2 → R2 be the identity map, so that

T

([
a
b

])
=

[
a
b

]
.

• T is surjective: for any

[
a
b

]
∈ R2 we have T

([
a
b

])
=

[
a
b

]
.

• T is injective: each vector maps to itself, so equal outputs force equal inputs.

Example 2.88 (injective but not surjective). Define T: R2 → R3 by

T

([
x
y

])
=

 x
y

x+ y

 .
• This map T is not surjective because, for instance,

00
1

 /∈ im(T ).

• But T is injective: if T

([
x
y

])
= T

([
u
v

])
, comparing the first two coordinates gives

x = u and y = v, hence the inputs are equal.
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Example 2.89 (surjective but not injective). Define T: R3 → R2 by

T

xy
z

 =

[
x
y

]
.

• This function T is surjective because for any

[
i
j

]
∈ R2 we have T

ij
0

 =

[
i
j

]
.

• But T is not injective since, for example,

T

ij
0

 =

[
i
j

]
= T

ij
1

 .

We can characterize injectivity via the kernel:

Definition 2.90. The kernel of a linear transformation T: Rn → Rm is the set

ker(T) := {x ∈ Rn | T(x) = 0}.

Remark 2.91. Note that the kernel of any linear transformation always contains the zero
vector.

Theorem 2.92. Let T : Rn → Rm be a linear transformation. Then T is injective if and
only if the equation T(x) = 0 has only the trivial solution x = 0. Equivalently, T is injective
if and only if ker(T ) = {0}.

We can also decide if a linear transformation is injective or surjective by looking at the
RREF of the corresponding standard matrix.

Theorem 2.93. Let T: Rn → Rm be a linear transformation with standard matrix A.

a) The linear transformation T is surjective if and only if the columns of A span Rm.

Equivalently: T is surjective if and only if A has a pivot in every row.

b) The linear transformation T is injective if and only if the columns of A are linearly
independent.

Equivalently: T is surjective if and only if A has no free variables, meaning it has a
pivot in every column.

Example 2.94 (Identity map is bijective). The linear transformation with standard matrix

I3 =

1 0 0
0 1 0
0 0 1


is both surjective and injective since it has a pivot in every column and every row.
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Example 2.95 (surjective but not injective). Let T: R2 → R be given by

T

([
x1
x2

])
= x1.

Its standard matrix is A =
[
1 0

]
. Thus T is surjective, as A has a pivot in every row. In

fact, we can see that for each b ∈ R we can take

T

([
b
0

])
= b.

On the other hand, T is not injective since there is no pivot on the second column. In fact,
we can see that for example

T

([
1
0

])
= T

([
1
1

])
= 1.

Example 2.96 (injective but not surjective). Let T: R2 → R3 be gien by

T

([
x
y

])
=

xy
0

 .
Its standard matrix is 1 0

0 1
0 0

 .
Thus T is injective but not surjective.

Example 2.97. Consider the linear transformation with standard matrix

A =

 3 5 −4
−3 −2 4
6 1 −8

 .
Row-reducing gives

A ∼

1 0 −4
3

0 1 0

0 0 0

 .
There is a pivot in each of the first two rows but none in the third, so T is not surjective.
There is a missing pivot in the third column (a free variable), so T is not injective.
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