Math 115: Linear and quadratic approximations of differentiable functions

In Section 3.9, you learned that a differentiable function $f(x)$ looks like a straight line $L(x)$ when you zoom in on its graph near a point. The graphs below show the graph of $y=L(x)$ near $x=1$.

The linear function $L(x)$ near the point $x=a$ is given by the formula

$$
L(x)=f(a)+f^{\prime}(a)(x-a) .
$$

In the graph above, the value of $a=1$. Notice that the graph of $y=L(x)$ is only close to the graph of $y=f(x)$ for values of x close to 1 . We call $L(x)$ the tangent line approximation (or local linearization) of $f(x)$ near $x=a$. Notice that the value of $x=a$, the function $L(x)$ has the same output value and derivative value as $f(x)$.

One reason why the linear approximations are widely used to approximate values of differentiable functions is because the formulas for the linear function $L(x)$ is simple. However, this simplicity can mean that the linear approximation may not be a very close approximation for $f(x)$. We may want another function that is still fairly simple, but approximates $f(x)$ more closely. If the function $f(x)$ is twice differentiable, then its values can be approximated using quadratic functions. Suppose we want to approximate values of a differentiable function $f(x)$ near the point $x=a$ with a quadratic function

$$
Q(x)=A+B(x-a)+C(x-a)^{2}
$$

where A, B and C are constants whose values need to be determined based on the values of the function $f(x)$ near $x=a$. We use $(x-a)$ and $(x-a)^{2}$ instead of x and x^{2} because this makes it easier to think about the properties of the approximation at $x=a$. Just as with the linear approximation, we want $Q(x)$ to have the same value and slope at $x=a$ as $f(x)$, but now we can also require that the second derivatives be equal. That is, we want to find A, B and C such that $Q(a)=f(a), Q^{\prime}(a)=f^{\prime}(a)$ and $Q^{\prime \prime}(a)=f^{\prime \prime}(a)$. In order for this to be true $A=f(a), B=f^{\prime}(a)$ and $C=\frac{1}{2} f^{\prime \prime}(a)$. (You should take the time to find $Q^{\prime}(a)$ and $Q^{\prime \prime}(a)$ to verify this for yourself.) Hence we get the formula

$$
Q(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2} .
$$

There are a couple of things that are important to keep in mind regarding the formula for $Q(x)$:

- The formula of $Q(x)$ depends in the values of a. This means that this formula will give us different parabolas that approximate the values of $f(x)$ at different points.

- The first two terms in the formula of $Q(x)$ correspond to the terms in the formula for the tangent line approximation $L(x)$ of $f(x)$. In a sense, the new term in the formula of $Q(x)$ is a term that bends the graph of the tangent lines closer to the graph of $f(x)$.

In order to understand this formula, we will work a couple of examples:
Example 1: Find the linear and quadratic approximations to the following functions near the indicated points.
i) $f(x)=\frac{2}{x+1}$ near $x=2.2$.
ii) $g(x)=x e^{-2 x}$ near $x=1$.
iii) $h(p)=\sqrt{1-4 p}$ near $p=-2$.
iv) $j(z)=\ln \left(b z^{2}+6\right)$ near $z=0$ where b is a positive constant.

Solution:
i) $f(x)=\frac{2}{x+1}$ near $x=2.2$.

Since

$$
\begin{aligned}
f^{\prime}(x) & =-2(x+1)^{-2} \\
f^{\prime \prime}(x) & =4(x+1)^{-3}
\end{aligned}
$$

then

$$
L(x)=f(2.2)+f^{\prime}(2.2)(x-2.2)=\frac{1}{32}-\frac{1}{512}(x-2.2)
$$

and

$$
\begin{aligned}
Q(x) & =f(2.2)+f^{\prime}(2.2)(x-2.2)+\frac{1}{2} f^{\prime \prime}(2.2)(x-2.2)^{2} \\
& =\frac{1}{32}-\frac{1}{512}(x-2.2)+\frac{1}{16384}(x-2.2)^{2}
\end{aligned}
$$

ii) $g(x)=x e^{-2 x}$ near $x=1$.

Since

$$
\begin{aligned}
g^{\prime}(x) & =e^{-2 x}-2 x e^{-2 x}=e^{-2 x}(1-2 x) \\
g^{\prime \prime}(x) & =-2 e^{-2 x}-2\left(e^{-2 x}-2 x e^{-2 x}\right)=-4 e^{-2 x}+4 x e^{-2 x}=-4 e^{-2 x}(1-x)
\end{aligned}
$$

then

$$
L(x)=g(1)+g^{\prime}(1)(x-1)=e^{-2}-e^{-2}(x-1)
$$

and

$$
Q(x)=e^{-2}-e^{-2}(x-1)=L(x)
$$

iii) $h(p)=\sqrt{1-4 p}$ near $p=-2$.

Since

$$
\begin{aligned}
h^{\prime}(p) & =\frac{1}{2}(1-4 p)^{-\frac{1}{2}}(-4)=-2(1-4 p)^{-\frac{1}{2}} \\
h^{\prime \prime}(p) & =-\frac{1}{2}(-2)(1-4 p)^{-\frac{3}{2}}(-4)=-4(1-4 p)^{-\frac{3}{2}}
\end{aligned}
$$

then

$$
L(p)=h(-2)+h^{\prime}(-2)(p+2)=3-\frac{2}{3}(p+2)
$$

and

$$
\begin{aligned}
Q(p) & =h(-2)+h^{\prime}(-2)(p+2)+\frac{1}{2} h^{\prime \prime}(-2)(p+2)^{2} \\
& =3-\frac{2}{3}(p+2)-\frac{2}{27}(p+2)^{2}
\end{aligned}
$$

iv) $j(z)=\ln \left(b z^{2}+6\right)$ near $z=0$ where b is a positive constant. Since

$$
\begin{aligned}
& j^{\prime}(z)=\frac{1}{b z^{2}+6}(2 b z)=\frac{2 b z}{b z^{2}+6} \\
& j^{\prime \prime}(z)=\frac{2 b\left(b z^{2}+6\right)-2 b z(2 b z)}{\left(b z^{2}+6\right)^{2}}=\frac{2 b^{2} z^{2}+12 b-4 b^{2} z^{2}}{\left(b z^{2}+6\right)^{2}}=\frac{12 b-2 b^{2} z^{2}}{\left(b z^{2}+6\right)^{2}}
\end{aligned}
$$

then

$$
L(z)=j(0)+j^{\prime}(0) z=\ln (6)
$$

and

$$
Q(z)=j(0)+j^{\prime}(0) z+\frac{1}{2} j^{\prime \prime}(0) z^{2}=\ln (6)+\frac{b}{6} z^{2}
$$

Example 2: Let $f(x)=4+\sin (2 x)$.
i) Find the linear $(L(x))$ and quadratic $(Q(x))$ approximations to the function $f(x)$ near $x=1$.
ii) Approximate the values of $f(x)$ for $x=0.5,0.75,1,1,25$ and 1.5 using the functions $L(x)$ and $Q(x)$. Compare the values of your approximations to the actual values of $f(x)$ at these values. What do you notice?
iii) Use the graphs of the functions $f(x), L(x)$ and $Q(x)$ to determine which of these functions approximate better the values of $f(x)$ for $0.5 \leq x \leq 1.5$.
iv) Let $P(x)$ be the quadratic approximation to $f(x)$ near $x=\frac{\pi}{2}$.
a) Find a formula for $P(x)$.
b) Without evaluating $P(x)$, which quadratic approximation to $f(x)$ would you expect to give you a closer value to $f(1.5), P(x)$ or $Q(x)$? Justify.
c) Find the values of $P(1.5)$ to verify your answer in b$)$.

Solution: Using the formulas we obtain that the linear and quadratic approximation functions $L(x)$ and $Q(x)$ of $f(x)$ near $x=1$ are given by

$$
L(x)=f(1)+f^{\prime}(1)(x-1)=2+\sin (2)+2 \cos (2)(x-1)
$$

and

$$
\begin{aligned}
Q(x) & =f(1)+f^{\prime}(1)(x-1)+\frac{1}{2} f^{\prime \prime}(1)(x-1)^{2} \\
& =2+\sin (2)+2 \cos (2)(x-1)-2 \sin (2)(x-1)^{2}
\end{aligned}
$$

Using these formulas, we compute their values at $x=0.5,0.75,1,1,25$ and 1.5 accurate up to their first three decimals. Our results are recorded in the table below

x	0.5	0.75	1	1.25	1.5
$f(x)$	2.841	2.997	$\mathbf{2 . 9 0 9}$	2.598	2.141
$L(x)$	3.254	3.117	$\mathbf{2 . 9 0 9}$	2.701	2.493
$Q(x)$	2.870	3.003	$\mathbf{2 . 9 0 9}$	2.587	2.038

Graphing all the functions we can observe that $Q(x)$ better approximates the values of $f(x)$ close to $x=1$. In general, we expect the quadratic approximation $Q(x)$ to produce a better approximation to the values of $f(x)$ than the tangent line approximation for values close to $x=1$. This is the reason why we are interested in quadratic approximations.

In part iv), you are going to use two quadratic approximations to $f(x)$ near two different points to make approximations to the value of $f(1.5)$. The quadratic approximation $Q(x)$ is centered at $a=1$ while the other one, $P(x)$, is centered at $a=\frac{\pi}{2} \approx 1.5707$. Using the fact that

$$
\begin{aligned}
f\left(\frac{\pi}{3}\right) & =2+\sin \pi=2 \\
f^{\prime}\left(\frac{\pi}{3}\right) & =2 \cos (\pi)=-2 \\
f^{\prime \prime}\left(\frac{\pi}{3}\right) & =-4 \sin (\pi)=0
\end{aligned}
$$

Then $P(x)=2-2\left(x-\frac{\pi}{2}\right)$. Notice that in this case, the quadratic approximation of $f(x)$ near $x=\frac{\pi}{2}$ is equal to the linear approximation of $f(x)$ at that point.
Since $P(x)$ is centered at $x=\frac{\pi}{2}$, a point that is closer to $x=1.5$ compared to $x=1$, then we expect $P(1.5)$ to be a better approximation to $f(1.5)$.
Using our formula, we get $P(1.5)=2-2\left(1.5-\frac{\pi}{2}\right) \approx 2.1415$. From our previous computations we see that $P(1.5)$ is closer to $f(1.5)$ than $Q(1.5)$.

