Worksheet 14

Warm-up question

$\left(x^{n}\right)^{\prime}=$
Given functions f and g and $h(x)=f(x)+g(x), h^{\prime}(x)=$

Problem 0. Compute the derivatives of the functions in Exercises 6-24 in section 3.1.
Problem 1. The graph of $f(x)=x^{3}-9 x^{2}-16 x+1$ has two points where the tangent line to the graph has a slope of 5 . Find the coordinates of those points.

Problem 2. On what intervals is the graph of $g(x)=x^{4}-4 x^{3}$ both decreasing and concave up?
Problem 3. For what values of x is the function $f(x)=x^{5}-5 x$ both increasing and concave up?
Problem 4. The $n^{\text {th }}$ derivative of $f, f^{(n)}(x)$, is the result of differentiating $f(x) n$ times. Consider the function $f(x)=x^{7}+5 x^{5}-4 x^{3}+6 x-7$.
(a) Find the 8 th derivative of $f(x)$. Think ahead!
(b) Find the 7th derivative of $f(x)$.

Problem 5. Suppose p is a cubic polynomial function, meaning that $p(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ for some constants $a_{0}, a_{1}, a_{2}, a_{3}$, with $a_{0} \neq 0$.
(a) Write expressions for $p(0), p^{\prime}(0), p^{\prime \prime}(0)$ and $p^{\prime \prime \prime}(0)$ depending on a_{0}, a_{1}, a_{2}, and a_{3}.
(b) Find the formula for a cubic polynomial function q that satisfies

$$
q(0)=2, \quad q^{\prime}(0)=-1, \quad q^{\prime \prime}(0)=5, \quad q^{\prime \prime \prime}(0)=4
$$

Problem 6. Assume that $f^{\prime \prime}$ and $g^{\prime \prime}$ exist and that f and g are concave up for all x. Are the following statements true or false? If a statement is true, explain how you know. If a statement is false, give a counterexample.
(a) $f(x)+g(x)$ is concave up for all x.
(b) $f(x)-g(x)$ cannot be concave up for all x.

Problem 7. Let $f(x)=x^{4}-3 x^{2}+1$.
(a) Show that $f(x)$ is an even function.
(b) Show that $f^{\prime}(x)$ is an odd function.
(c) Are all polynomials of even degree even functions?

