Worksheet 15

Warm-up question

$\left(e^{x}\right)^{\prime}=$
$\left(a^{x}\right)^{\prime}=$

$$
(\sin (x))^{\prime}=
$$

$$
(\cos (x))^{\prime}=
$$

Problem 1. Find a quadratic polynomial $p(x)=a x^{2}+b x+c$ which best fits the function $f(x)=e^{x}$ at $x=0$, in the sense that $p(0)=f(0), p^{\prime}(0)=f^{\prime}(0)$ and $p^{\prime \prime}(0)=f^{\prime \prime}(0)$.
Problem 2. Find the $50^{\text {th }}$ derivative of $y=\cos (x)$.
Problem 3. Find the derivatives of the functions. Assume that a, b, c, and k are constants.
(a) $f(x)=2 e^{x}+x^{2}$
(j) $y=5 t^{2}+4 e^{t}$
(s) $f(x)=a^{5 x}$
(b) $f(x)=12 e^{x}+11^{x}$
(k) $y=5 x^{2}+2^{x}+3$
(t) $f(x)=2^{x}+2 \cdot 3^{x}$
(c) $y=4 \cdot 10^{x}-x^{3}$
(1) $z=(\ln 4) e^{x}$
(d) $y=2^{x}+\frac{2}{x^{3}}$
(m) $y=(\ln 4) 4^{x}$
(u) $y=\frac{3^{x}}{3}+\frac{33}{\sqrt{x}}$
(e) $y=5 \cdot 5^{t}+6 \cdot 6^{t}$
(n) $h(z)=(\ln 2)^{z}$
(v) $f(t)=(\ln 3)^{t}$
(f) $y=\pi^{2}+\pi^{x}$
(o) $f(x)=e^{\pi}+\pi^{x}$
(w) $f(x)=e^{2}+x^{e}$
(g) $f(x)=e^{k}+k^{x}$
(p) $f(x)=e^{1+x}$
(x) $f(x)=\pi^{x}+x^{\pi}$
(h) $f(\theta)=e^{k \theta}-1$
(q) $y(x)=a^{x}+x^{a}$
(y) $f(t)=e^{t+2}$
(i) $f(x)=2 x-\frac{1}{\sqrt[3]{x}}+3^{x}-e$
(r) $f(x)=\sin (\pi x)+\cos \left(\frac{\pi}{2}\right) e^{-x}$
(z) $f(x)=x^{\pi^{2}}+\pi^{2 x}$

Problem 4. Are the following statements true or false? Give an explanation for your answer.
(a) If $f(x)$ is increasing, then $f^{\prime}(x)$ is increasing.
(b) There is no function such that $f^{\prime}(x)=f(x)$ for all x besides the constant function $f(x)=0$.
(c) There is no function such that $f^{\prime}(x)=-f(x)$ for all x besides the constant function $f(x)=0$.
(d) There is no function such that $f^{\prime \prime}(x)=-f(x)$ for all x besides the constant function $f(x)=0$.
(e) If $f(x)$ is defined for all x, then $f^{\prime}(x)$ is defined for all x.

Problem 5. (Winter 2016 Exam 3) For constants A and B, consider the function h defined by

$$
h(t)= \begin{cases}(A t)^{2}-48 & \text { if } t<2 \\ B t^{3} & \text { if } t \geqslant 2\end{cases}
$$

Circle all pairs of values of A and B such that $h(t)$ is differentiable.
i. $A=3, B=3$
iii. $A=-6, B=12$
v. $A=18, B=12$
ii. $A=6, B=12$
iv. $A=0, B=0$
vi. NONE OF THESE

Problem 6. For what value(s) of a are $y=a^{x}$ and $y=x+1$ tangent at $x=0$?
Problem 7 (Winter 2018 Exam 2 Problem 6). The function $P(t)$ is given by the equation

$$
P(t)= \begin{cases}t+4 & t<2 \\ t^{2}-3 t+8 & 2 \leqslant t \leqslant 3 \\ \frac{1}{9}\left(t^{3}+44\right) & t>3\end{cases}
$$

For which values of t is $\mathrm{P}(\mathrm{t})$ differentiable? Show all your work to justify your answer.
Problem 8 (Winter 2018 Exam 2 Problem 8). The graph of the derivative $g^{\prime}(x)$ of the function $g(x)$ with domain $-5<x<10$ is shown below.

The function $g^{\prime}(x)$ has corners at $x=5$ and $x=7$, and it is linear on the intervals $(5,7)$ and $(7,10)$. If there is not enough information given to answer the question, write NEI. If the answer is none, write NONE.
(a) Estimate the interval(s) on which the function $g(x)$ is concave up.
(b) Estimate the values of x in $5<x<10$ for which $g^{\prime \prime}(x)$ is not defined.
(c) Estimate the interval(s) on which $g^{\prime \prime \prime}(x)>0$. Recall that $g(x)$ is the derivative of $g(x)$.

