Worksheet 16

Warm-up question

$$(f(x)g(x))' = \left(\frac{f(x)}{g(x)}\right)' =$$

Problem 0. Using only the quotient rule and the derivatives of sine and cosine, find the derivative of the function $f(x) = \tan(x)$.

Problem 1. Find the derivative of the following functions:

i. $f(x) = x \cdot 2^x$ ii. $f(t) = x \cdot 2^x$ iv. $f(t) = \frac{t-3}{t+3}$ vii. $f(z) = \frac{az+b}{cz+k}$ ii. $f(t) = \sin(5)(t^2+3)e^t$ v. $f(x) = 2t \cdot x \cdot e^t - \frac{1}{\sqrt{t}}$ viii. $f(x) = (2-3x^2)(6x^e-3\pi)$ iii. $f(w) = \frac{w^{3.2}}{5^w}$ vi. $f(y) = \frac{4}{3+\sqrt{y}}$ ix. $f(x) = (3x^2+\pi)(e^x-4)$

Problem 2 (Fall 2017 Exam 2 Problem 1). Let g be a twice differentiable function defined on -1 < x < 11. Some values of g(x), g'(x) and g''(x) are shown in the table below.

x	0	2	4	6	8	10
g(x)	-2	-1	3	4	5	6
g'(x)	0.5	2	?	5	1	2
g''(x)	2	1	5	-3	-1	0.5

- (a) Let k(x) = g(x)g'(x). Find the value of g'(4) if k'(4) = 15.
- (b) Let $r(x) = \frac{\sin(x)}{g(x)}$. Find r'(0).

Problem 3. Consider the family of functions

$$f(x) = \frac{ax^b}{e^x}, \quad x \ge 0$$

where a > 0 and b > 1 are positive constants. Find the values of x for which the tangent lines of y = f(x) are horizontal. Your answer will contain a and b.