Worksheet 16

Warm-up question

$(f(x) g(x))^{\prime}=$

$$
\left(\frac{f(x)}{g(x)}\right)^{\prime}=
$$

Problem 0. Using only the quotient rule and the derivatives of sine and cosine, find the derivative of the function $f(x)=\tan (x)$.

Problem 1. Find the derivative of the following functions:
i. $f(x)=x \cdot 2^{x}$
iv. $f(t)=\frac{t-3}{t+3}$
vii. $f(z)=\frac{a z+b}{c z+k}$
ii. $f(t)=\sin (5)\left(t^{2}+3\right) e^{t}$
v. $f(x)=2 t \cdot x \cdot e^{t}-\frac{1}{\sqrt{t}}$
viii. $f(x)=\left(2-3 x^{2}\right)\left(6 x^{e}-3 \pi\right)$
iii. $f(w)=\frac{w^{3.2}}{5^{w}}$
vi. $f(y)=\frac{4}{3+\sqrt{y}}$
ix. $f(x)=\left(3 x^{2}+\pi\right)\left(e^{x}-4\right)$

Problem 2 (Fall 2017 Exam 2 Problem 1). Let g be a twice differentiable function defined on $-1<x<11$. Some values of $g(x), g^{\prime}(x)$ and $g^{\prime \prime}(x)$ are shown in the table below.

x	0	2	4	6	8	10
$g(x)$	-2	-1	3	4	5	6
$g^{\prime}(x)$	0.5	2	$?$	5	1	2
$g^{\prime \prime}(x)$	2	1	5	-3	-1	0.5

(a) Let $k(x)=g(x) g^{\prime}(x)$. Find the value of $g^{\prime}(4)$ if $k^{\prime}(4)=15$.
(b) Let $r(x)=\frac{\sin (x)}{g(x)}$. Find $r^{\prime}(0)$.

Problem 3. Consider the family of functions

$$
f(x)=\frac{a x^{b}}{e^{x}}, \quad x \geqslant 0
$$

where $a>0$ and $b>1$ are positive constants. Find the values of x for which the tangent lines of $y=f(x)$ are horizontal. Your answer will contain a and b.

