Worksheet 18

Problem 1 (Winter 2018 Exam 2 Problem 2). Find $\frac{d y}{d x}$ for the implicit function given by

$$
2^{x+y}+\sin (x) \cos (y)=5-x .
$$

Problem 2 (Exam 2 Fall 2016). Let a and b be constants. Consider the curve \mathcal{C} defined by the equation

$$
\cos (a x)+b y \ln (x)=3+y^{3} .
$$

Find the formula for $\frac{d y}{d x}$ in terms of x and y. The constants a and b may appear in your answer.
Problem 3 (Descartes' folium). The folium of Descartes (a.k.a. Descartes' leaf) was first discovered in 1638 and is defined as the curve

$$
x^{3}+y^{3}=6 x y
$$

The curve forms a loop in the first quadrant, and it is symmetric about $y=x$ with asymptote $x+y+2=0$:

(a) Show that the point $(x, y)=(3,3)$ lies on the curve.
(b) Find the equation of the tangent line to the curve at the point $(x, y)=(3,3)$.
(c) For what value(s) of x (if any) will the tangent line to this curve be horizontal?

Problem 4 (Fall 2017 Exam 2 Problem 8). Let \mathcal{C} be the curve given by the equation $81-\left(x^{2}+y^{2}\right)^{2}=$ $2 x y^{2}$. The graph of \mathcal{C} is shown below.

(a) Find the coordinates (x, y) of the point A.
(b) Find $\frac{d y}{d x}$.
(c) Find the equation of tangent line $L(x)$ to the graph of \mathcal{C} at A.
Show your computations step by step.

Problem 5.

(a) Find $\frac{d y}{d x}$ and $\frac{d x}{d y}$ given that $x^{2}+y^{2}-4 x+7 y=15$.
(b) Under what conditions on x and/or y is the tangent line to this curve horizontal? Vertical?

Problem 6 (A rose curve). A quadrifolium is a 4-petaled rose curve given by

$$
\left(x^{2}+y^{2}\right)^{3}=4 x^{2} y^{2}
$$

and which is shown below as the solid curve. It lies inside the unit circle $x^{2}+y^{2}=1 .{ }^{1}$

(a) Show that the point $(x, y)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ lies on the quadrifolium.
(b) Find the equation of the tangent line to the quadrifolium at $(x, y)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

[^0]Problem 7 (Winter 2018 Exam 2 Problem 2). Each the following is the graph of an implicit function.

Match each of the graphs above to the formula below that gives the slope at each point on the graph.
(a) $\frac{d y}{d x}=\frac{3 x^{2}}{2 y}$
(c) $\frac{d y}{d x}=\frac{x^{2}-1}{2 y}$
(b) $\frac{d y}{d x}=\frac{(x-1)(x+2)}{2 y}$
(d) $\frac{d y}{d x}=\frac{(y-1)(y+2)}{2 x}$

[^0]: ${ }^{1}$ Fun fact: quite surprisingly the area of the quadrifolium equals $\frac{\pi}{2}$!

