Worksheet 31

Warm-up question

The function $F(x)$ is an antiderivative of $f(x)$ if
If $F(x)$ is an antiderivative of the differentiable function $f(x)$,
(a) If f is positive on an interval, then F is \qquad on that interval.
(b) If f is increasing on an interval, then F is \qquad on that interval.

Problem 0. For each of the given functions f, sketch the graphs of its antiderivatives F, G, H and K such that $F(0)=0, G(0)=1, H(0)=2$ and $K(0)=-2$.
(a) f is the constant function $f(x)=0 . \quad$ (b) f is the constant function $f(x)=1$.

Problem 1. The function g is defined on the interval $[-2,2]$ and has $g(-1)=1$. Below is the graph of its derivative $g^{\prime}(x)$. Sketch the graph of g.

Problem 2 (Fall 2013 Final Exam Problem 3). The function $g(t)$ is the volume of water in the town water tank, in thousands of gallons, t hours after 8 A.M. A graph of $g^{\prime}(t)$ is shown below. Note that $g^{\prime}(t)$ is a piecewise-linear function. Suppose that $g(3)=1$.

(a) Write an integral which represents the average rate of change, in thousands of gallons per hour, of the volume of water in the tank between 9 A.M. and 1 P.M. Compute its exact value.
(b) At what time does the tank have the most/least water in it?
(c) Sketch a graph of $g(t)$ and give both coordinates of the point on the graph at $t=7$.

Problem 3 (Fall 2014 Final Exam Problem 4). A portion of the graph of $y=f(x)$ is shown below. The area of the region A is 3 , and the area of the region B is 3 . Let $F(x)$ be the continuous antiderivative of $f(x)$ with $F(0)=1$ whose domain includes the interval $-6 \leqslant x \leqslant 4$.

(a) For what value(s) of x with $-6<x<4$ does $F(x)$ have local extrema?
(b) Sketch the graph of $y=F(x)$ on the interval $-6 \leqslant x \leqslant 4$. Pay close attention to the following:

- the value of $F(x)$ at each of $x=-6,-4,-2,0,2,4$;
- where F is/is not differentiable;
- where F is increasing/decreasing/constant;
- the concavity of the graph of $y=F(x)$.

Problem 4 (Fall 2016 Final Exam Problem 11). A portion of the graph of k is shown below. Note that for $3<x<5$, the graph of $k(x)$ is a portion of the graph obtained by shifting $y=x^{2}$ three units to the right. Let $K(x)$ be a continuous antiderivative of k passing through the point $(-1,1)$.

(a) Use the graph to complete the table with exact values of K.

x	-5	-3	-1	1	3	5
$K(x)$						

(b) Sketch a detailed graph of $y=K(x)$ for $-5<x<5$. Pay close attention to the following:

- where $K(x)$ is and is not differentiable,
- the values of $K(x)$ you found in the table above,
- where $K(x)$ is increasing/decreasing/constant, and the concavity of $K(x)$.

Problem 5 (Fall 2017 Final Exam Problem). A portion of the graphs of two functions $y=s(t)$ and $y=S(t)$ are shown below. Suppose that $S(t)$ is the continuous antiderivative of $s(t)$ passing through the point $(0,-1)$. Note that the graphs are linear anywhere they appear to be linear, and that on the intervals $(3,4)$ and $(4,5)$, the graph of $s(t)$ is a quarter circle.

(a) Use the portions of the graphs to fill in the exact values of $S(t)$ in the table below.

t	-2	-1	0	2	3	5
$S(t)$						

(b) Sketch the missing portions of both s and S over the interval $-2<t<5$. Pay attention to:

- the values of $S(t)$ from the table above;
- where S is and is not differentiable;
- the concavity of the graph $y=S(t)$.
- where S and s are increasing/decreasing/constant;

Problem 6 (Winter 2016 Final Exam Problem 10). Which of the following is an antiderivative of the function $f(x)=\cos (x)$? Circle all the correct options.
(a) $\frac{\cos (x)}{2}$
(c) $\cos \left(x-\frac{\pi}{2}\right)$
(e) $19-\sin (x)$
(b) $\sin (x)+5$
(d) $\ln \left(3 e^{\sin (x)}\right)$
(f) None of these

Problem 7 (Fall 2017 Final Exam Problem 9). Which of the following is an antiderivative of the function $f(x)=\frac{1}{x}+\cos (x)$? Circle all the correct options.
(a) $-\frac{1}{x^{2}}-\sin (x)$
(c) $\ln (x)+\sin (x)-20$
(e) $\frac{1}{x^{2}}+\sin (x)$
(b) $\ln (5 x)+\sin (x)$
(d) $\ln \left(\frac{1}{x} \cos (x)\right)$
(f) None of these

Problem 8 (Winter 2013 Final Exam Problem 9). The number p is a constant. Which of the following is an antiderivative of $g(x)=\ln (x+p) ?$
(a) $G(x)=\frac{p}{x+p}$.
(d) $G(x)=\frac{\ln (x+p)}{p}-x$.
(b) $G(x)=\frac{1}{x+p}$.
(c) $G(x)=(x+p) \ln (x+p)-x$.
(e) $G(x)=x^{2} \ln (x+p)-x$.

Problem 9 (Winter 2015 Final Exam Problem 11). Suppose that w and r are continuous functions on $(-\infty, \infty), W(x)$ is an invertible antiderivative of $w(x)$, and $R(x)$ is an antiderivative of $r(x)$. Which of the following statements must be true?
(a) $W(x)+R(x)+2$ is an antiderivative of $w(x)+r(x)$.
(b) $W(x)+R(x)+2$ is an antiderivative of $w(x)+r(x)+2$.
(c) $\cos (W(x))$ is an antiderivative of $\sin (w(x))$.
(d) $e^{W(x)}$ is an antiderivative of $w(x) e^{w(x)}$.
(e) $e^{R(x)}$ is an antiderivative of $r(x) e^{R(x)}$
(f) If w is never zero, then $W^{-1}(R(x))$ is an antiderivative of $\frac{r(x)}{w\left(W^{-1}(R(x))\right)}$.
(g) None of these

