Worksheet 32

Warm-up questions

If k is a constant,
$$\int k \, dx =$$

If $n \neq -1$, $\int x^n \, dx =$
 $\int \frac{1}{x} \, dx =$
 $\int e^x \, dx =$

Problem 0. Find the following indefinite integrals.

(a)
$$\int \frac{8}{\sqrt{u}} du$$
 (c) $\int 2 + \cos t \, dt$ (e) $\int (x+3)^2 dx$ (g) $\int \frac{x+1}{x} dx$ (i) $\int 4t + \frac{1}{t} dt$
(b) $\int e^x + x^e \, dx$ (d) $\int 7e^x dx$ (f) $\int t^3 (t^2+1) dx$ (h) $\int \sqrt{x^3} - \frac{2}{x} dx$ (j) $\int \sin(3x) dx$

Problem 1. Evaluate the definite integrals exactly using the Fundamental Theorem of Calculus.

(a)
$$\int_{0}^{3} (x^{2} + 4x + 3) dx$$
 (c) $\int_{0}^{2} 3e^{t} dt$
(b) $\int_{0}^{\frac{\pi}{4}} \sin \theta d\theta$ (d) $\int_{1}^{2} \frac{1 + y^{2}}{y} dy$

Problem 2 (Winter 2016 Final Exam Problem 10). Which of the following is an antiderivative of the function $f(x) = \cos(x)$? Circle all the correct options.

(a) $\frac{\cos(x)}{2}$ (c) $\cos(x - \frac{\pi}{2})$ (e) $19 - \sin(x)$ (b) $\sin(x) + 5$ (d) $\ln(3e^{\sin(x)})$ (f) None of these

Problem 3 (Fall 2017 Final Exam Problem 9). Which of the following is an antiderivative of the function $f(x) = \frac{1}{x} + \cos(x)$? Circle all the correct options.

(a) $-\frac{1}{x^2} - \sin(x)$ (c) $\ln(x) + \sin(x) - 20$ (e) $\frac{1}{x^2} + \sin(x)$ (b) $\ln(5x) + \sin(x)$ (d) $\ln(\frac{1}{x}\cos(x))$ (f) None of these

Problem 4 (Winter 2013 Final Exam Problem 9). The number p is a constant. Which of the following is an antiderivative of $g(x) = \ln(x+p)$?

(a) $G(x) = \frac{p}{x+p}$. (b) $G(x) = \frac{1}{x+p}$. (c) $G(x) = (x+p)\ln(x+p) - x$. (d) $G(x) = \frac{\ln(x+p)}{p} - x$. (e) $G(x) = x^2 \ln(x+p) - x$. **Problem 5** (Winter 2015 Final Exam Problem 11). Suppose that w and r are continuous functions on $(-\infty, \infty)$, W(x) is an invertible antiderivative of w(x), and R(x) is an antiderivative of r(x). Which of the following statements must be true?

- (a) W(x) + R(x) + 2 is an antiderivative of w(x) + r(x).
- (b) W(x) + R(x) + 2 is an antiderivative of w(x) + r(x) + 2.
- (c) $\cos(W(x))$ is an antiderivative of $\sin(w(x))$.
- (d) $e^{W(x)}$ is an antiderivative of $w(x)e^{w(x)}$.
- (e) $e^{R(x)}$ is an antiderivative of $r(x)e^{R(x)}$
- (f) If w is never zero, then $W^{-1}(R(x))$ is an antiderivative of $\frac{r(x)}{w(W^{-1}(R(x)))}$.
- (g) None of these