Math 412. Adventure sheet on Compass and straightedge constructions

Constructions with compass and straightedge: Athena gives you two marked points in the plane; we call them $(0,0)$ and $(1,0)$. You are allowed to do three things:

- use a straightedge to draw the line between two marked points
- use the compass to draw a circle whose center is a marked point, and with a radius to another marked point
- mark any point of intersection between lines and circle you draw.

BASIC CONSTRUCTIONS:

- double or triple a length
- halve a length
- draw a perpendicular line through a point
- bisect an angle

ADVANCED CONSTRUCTIONS:

- draw a parallel line though a point
- moving a segment of a given length onto a given line starting at a given point
- add or subtract two lengths
- create (α, β) from $(\alpha, 0)$ and $(\beta, 0)$
- create $(\alpha, 0)$ and $(\beta, 0)$ from (α, β)
- take the quotient of two lengths
- multiply two lengths
- take the square root of a length

Here are examples of some of these constructions. Think about the rest or look them up in the book.

To double the length $A B$, make a circle centered at B passing through A, and intersect it with the line of $A B . A C$ has twice the length.

To halve the length $A B$, make a circle centered at A passing through B and a circle centered at B passing through A. These intersect at two points C and D. The line through $C D$ meets the segment $A B$ at its midpoint.

To move the segment $A B$ to the x-axis starting at C, make a line g parallel to the x-axis passing through A. Make a circle centered at A passing through B, and mark the point of intersection with g; call it D. Finally, make a line parallel to $A C$ passing through D. The segment $C E$ has the same length as $A B$.

To make a segment whose length is the quotient of the lengths of two other segments, we can assume the given segments are on the y-axis $\left(P_{0} A\right)$ and x axis $\left(P_{0} B\right)$. Remember that we have the point $P_{1}=(1,0)$ given. Make a line parallel to $A B$ through P_{1}, and take its point of intersection with the y-axis; call it C. The length of $P_{0} C$ is $\frac{\left|P_{0} A\right|}{\left|P_{0} B\right|}$.

To make a segment whose length is the square root of $P_{0} A$, first halve the segment; call the midpoint B. Take the circle e with center B passing through A. Make a line f parallel to the y-axis passing through $P_{1}=(1,0)$. Mark the intersection point C of e and f. The length of the segment $P_{1} C$ is a the square root of $P_{0} A$.

DEFINITION: If we can mark a point $P=(\alpha, \beta)$ by using these rules repeatedly, we say that P is constructible. We say that a number α is constructible if $Q=(\alpha, 0)$ is constructible.

Our advanced constructions prove the following theorem (discuss!):

Theorem 1:

(1) A point $P=(\alpha, y)$ is a constructible point if and only if α and β are constructible numbers.
(2) If x and y are constructible numbers, then so are $\alpha+\beta, \alpha-\beta, \alpha \beta, \alpha / \beta$, and $\sqrt{\alpha}$ (if $\alpha>0)$.

Definition: Let $\mathbb{F} \subseteq \mathbb{R}$ be a subfield. A quadratic extension field of \mathbb{F} is a set of the form

$$
\mathbb{F}(\sqrt{k})=\{a+b \sqrt{k} \mid a, b \in \mathbb{F}\} \subseteq \mathbb{R}
$$

for some $k \in \mathbb{F}, k>0$, such that k is not a square of an element in \mathbb{F}.
DEFINITION: A quadratic extension tower over \mathbb{Q} is a sequence of subfields of \mathbb{R}

$$
\mathbb{Q} \subseteq F_{1} \subseteq F_{2} \subseteq \cdots \subseteq F_{t} \subseteq \mathbb{R}
$$

such that

$$
F_{1}=\mathbb{Q}\left(\sqrt{k_{1}}\right), F_{2}=F_{1}\left(\sqrt{k_{1}}\right), \ldots, F_{t}=F_{t-1}\left(\sqrt{k_{t}}\right),
$$

with $k_{1} \in \mathbb{Q}_{>0}, k_{2} \in\left(F_{1}\right)_{>0}, \ldots, k_{t} \in\left(F_{t-1}\right)_{>0}$.
THEOREM 2: A number $\alpha \in \mathbb{R}$ is constructible if and only if there is a quadratic extension tower over \mathbb{Q} for which $\alpha \in F_{t}$ (with notation as above).

TheOrem 3: If α is a root of an irreducible cubic polynomial in $\mathbb{Q}[x]$, then α is not an element of any field in a quadratic extension tower over \mathbb{Q}.
A. Doubling the cube: Can you construct the base of a cube C with volume 2 ?
(1) Explain why $\sqrt[3]{2}$ is a root of an irreducible cubic polynomial in $\mathbb{Q}[x]$.
(2) Explain how it follows from Theorems 2 and 3 that it is impossible to double the cube with straightedge and compass.
B. Trisecting an angle: Given an angle, can you divide it into three equal angles?
(1) To show this is impossible, why does it suffice to show that the number $\cos \left(20^{\circ}\right)$ is not constructible?
(2) The triple-angle formula for cosine says that $\cos (3 \theta)=4 \cos (\theta)^{3}-3 \cos (\theta)$. Show that $\cos \left(20^{\circ}\right)$ is a root of the polynomial $f(x)=8 x^{3}-6 x-1$.
(3) Show that $f(x)$ has no rational roots. ${ }^{1}$ Conclude that $f(x)$ is irreducible in $\mathbb{Q}[x]$.
(4) Explain how it follows from Theorems 2 and 3 that it is impossible to trisect an angle with straightedge and compass.

[^0]C. Quadratic extension fields: Let $\mathbb{F} \subseteq \mathbb{R}$ be a subfield.
(1) Show that ${ }^{2}$ any quadratic extension field $\mathbb{F}(\sqrt{k})$ is a subfield of \mathbb{R}.
(2) Show that if $x \in \mathbb{R}$ is a solution of $A x^{2}+B x+C=0$ for some $A, B, C \in \mathbb{F}$, then $x \in \mathbb{F}(\sqrt{k})$ for some k.
(3) Show that the $\operatorname{map} \phi: \mathbb{F}(\sqrt{k}) \rightarrow \mathbb{F}(\sqrt{k})$ given by $\phi(a+b \sqrt{k})=a-b \sqrt{k}$ is a ring homomorphism, and that $\phi(f)=f$ for any element of \mathbb{F}.
(4) Use this fact to show that if $f(x)$ is a cubic polynomial with coefficients in \mathbb{F}, and $f(a+$ $b \sqrt{k})=0$, then $f(a-b \sqrt{k})=0 .{ }^{3}$
D. Intersection points: Let $\mathbb{F} \subseteq \mathbb{R}$ be a subfield. Let L_{1} and L_{2} be lines through two points with coordinates in \mathbb{F}. Let C_{1} and C_{2} be circles whose centers have coordinates in \mathbb{F}, and radii are values of \mathbb{F}.
(1) If L_{1} is not vertical, why are the slope and y-intercept of L_{1} values of \mathbb{F} ? What can you say about the equation of L_{1} if it is vertical?
(2) Explain why C_{1} has an equation of the form $(x-A)^{2}+(y-B)^{2}=C^{2}$, where $A, B, C \in \mathbb{F}$.
(3) Explain why the intersection point of L_{1} and L_{2} (if they are not parallel) has coordinates in \mathbb{F}.
(4) Explain why the intersection points of L_{1} and C_{1} (if they exist) have coordinates in a quadratic extension field of \mathbb{F}.
(5) Explain why the intersection points of C_{1} and C_{2} (if they exist) have coordinates in a quadratic extension field of \mathbb{F}.

E. Constructible numbers:

(1) Explain why every rational number $r \in \mathbb{Q}$ is constructible.
(2) Explain why any number in a quadratic extension field of \mathbb{Q} is constructible.
(3) Show that, if every number in a subfield \mathbb{F} of \mathbb{R} is constructible, then every number in any quadratic extension field $\mathbb{F}(\sqrt{k})$ of \mathbb{F} is constructible.
(4) Show that any element of $r \in F_{t}$ for a field in a quadratic extension tower over \mathbb{Q} is constructible.
(5) Show that any constructible number $r \in \mathbb{R}$ is an element of some field F_{t} that lies in a quadratic extension tower.
(6) Conclude the proof of Theorem 2.

F. Cubic polynomials and quadratic extensions:

(1) Show that if \mathbb{F} is a field, $\mathbb{F}(\sqrt{k})$ is a quadratic extension, and $\alpha \in \mathbb{F}(\sqrt{k})$, then $g(x)=$ $(x-\alpha)(x-\phi(\alpha))$ has coefficients in \mathbb{F} (i.e., is a polynomial in $\mathbb{F}[x])$, where ϕ is the map from the Quadratic extension fields problem.
(2) Show that if \mathbb{F} is a field, $\mathbb{F}(\sqrt{k})$ is a quadratic extension, $f(x) \in \mathbb{F}[x]$ is a cubic polynomial, and $f(x)$ has a root in $\mathbb{F}(\sqrt{k})$, then $f(x)$ has a root in $\mathbb{F} .{ }^{4}$
(3) Show that if γ is a root of an irreducible cubic polynomial in $\mathbb{Q}[x]$, then γ is not an element of any field in a quadratic extension tower over $\mathbb{Q} .{ }^{5}$
(4) Conclude the proof of Theorem 3.

[^1]
[^0]: ${ }^{1}$ Hint: Suppose there is a rational root a / b in lowest terms. Plug in this root, clear denominators, and show that if a prime divides a, it divides b, so WLOG $a=1$. Now show that if $p \mid b$ then $p \mid a$ or else $p=2 \ldots$

[^1]: ${ }^{2}$ Hint: What is $(a+b \sqrt{k})\left(\frac{a-b \sqrt{k}}{a^{2}-b^{2} k}\right)$?
 ${ }^{3}$ Hint: Let $\alpha=a+b \sqrt{k}$, and compute $\phi(f(a+b \sqrt{k}))$.
 ${ }^{4}$ Hint: Show that the polynomial $g(x)$ from the previous part divides $f(x)$.
 ${ }^{5}$ Hint: To obtain a contradiction, suppose γ is constructible, take a quadratic extension tower and pick F_{t} such that F_{t} contains γ but F_{t-1} does not.

