Definition: Fix a group G and a subgroup K. A right K-coset of K is any subset of G of the form

$$
K \circ b=\{k \circ b \mid k \in K\}
$$

where $b \in G$. Similarly, a left K-coset of K is any set of the form $b \circ K=\{b \circ k \mid k \in K\}$.
Proposition: Fix a group G and a subgroup K. The total number of right K-cosets is equal to the total number of left K-cosets.

Definition: Fix a group G and a subgroup K. The index of K in G is the total number of distinct right K-cosets of K in G. We write this index $[G: K]$.

LaGrange's Theorem: Fix a group G and a subgroup K. Then $|G|=|K|[G: K]$.
Definition: Let $a, b \in G$. We say a is congruent to b modulo K if $a b^{-1} \in K$.
A. Example in the Group of Integers. Let $G=(\mathbb{Z},+)$ and let K be the subgroup generated by 7 .
(1) Verify that $K=7 \mathbb{Z}=\{7 k \mid k \in \mathbb{Z}\}$.
(2) Describe the right K-coset $K+0$.
(3) Explain why the left/right K-coset containing a is the same as the set $[a]_{7} \subseteq \mathbb{Z}$.
(4) Find the index $[G: K]$. Verify LaGrange's theorem.
B. Example in S_{3}. Consider the subgroup K of S_{3} generated by (12).
(1) List out all the elements of K. What does Lagrange's Theorem predict about the number of right cosets of K?
(2) Find the right K-coset $K e$. Show that it is the same as the right coset $K(12)$.
(3) Find the right coset $K(23)$. Show that it is the same as the right coset $K(123)$.
(4) Find the right coset $K(13)$. Show that it is the same as the right coset $K(132)$.
(5) Write out all the elements of S_{3} explicitly, grouping them together if they are in the same right K-coset.
(6) Express S_{3} as a disjoint union of right K-cosets. How many right K-cosets are there in total?
(7) Verify Lagrange's Theorem for $K \subseteq S_{3}$.
C. Right K-cosets and congruence modulo K. Fix a group G and a subgroup K.
(1) Prove that a is congruent to b modulo K if and only if $a \in K b$. So the set of all elements congruent to $b \bmod K$ is precisely the right coset $K b$.
(2) Prove that congruence modulo K is an equivalence relation.
(3) Discuss: the concept of right K-coset is the group analog of the concept of congruence class modulo an ideal for rings.
(4) Show that if $b \in K a$, then $K a=K b$. Show also that if $b \notin K a$, then $K a \cap K b=\emptyset$. That is, two cosets are either exactly the same subset of G or they do not overlap at all.
D. The proof of Lagrange's Theorem. Fix a group G and a subgroup K. Let $a, b \in G$.
(1) Prove that there is a bijection

$$
K a \rightarrow K b
$$

given by right multiplication by $a^{-1} b$.
(2) Prove that G is the disjoint union of its distinct right K-cosets, all of which have cardinality $|K|$.
(3) Prove that if G is finite, then $|G|=[G: K]|K|$.
(4) Conclude that the order of any subgroup K must divide the order of G.
(5) Conclude that the order of any element in G must divide the order of G.
E. Left vs right cosets. Let G be a group and K be a subgroup of G.
(1) With the notation we used in A, is $K+0=0+K$? How about $K+a$ and $a+K$ for some $a \in \mathbb{Z}$?
(2) With the notation we used in B , is $K(123)=(123) K$?
(3) True or False: In an arbitrary group G, for any subgroup $K, K g=g K$ for all $g \in K$.
(4) True or False: In an arbitrary abelian group G, for any subgroup $K, K g=g K$ for all $g \in K$.
(5) True or False: In an arbitrary group G, every right K-coset is a subgroup of G.
F. Fix a subgroup K of a group (G, \circ).
(1) Show that $K e=K=e K$.
(2) Show that for any $a \in G$, there is a bijection $K \longrightarrow K a$.
(3) Prove that $|K \circ a|=|a \circ K|$, even if in general $K \circ a \neq \circ K$.
(4) Prove that if G is finite, the number of left K-cosets is the same as the number of right K-cosets.
G. A cautionary example. Let G be a group and let K be a subgroup. Consider the set G / K of all right K-cosets. It is tempting to try to define a quotient group as we defined quotient rings. That is, we can try to define a binary operation \star on G / K by $(K \circ g) \star(K \circ h):=K(g \circ h)$.
(1) Show that in the example of $7 \mathbb{Z}$ in \mathbb{Z} from A, \star is a well-defined binary operation.
(2) Show that in the example of $K=\langle(12)\rangle$ in S_{3} as in B, \star is not a well-defined binary operation. In fact, there is no natural way to induce a quotient group structure on the set of cosets G / K.
(3) For R_{4} in D_{4} in A , is \star a well-defined binary operation on the set of right cosets D_{4} / R_{4} ? Is $\left(D_{4} / R_{4}, \star\right)$ a group?
H. A matrix example. Consider $G=G L_{2}(\mathbb{R})$, the subgroup $K=S L_{2}(\mathbb{R})$, and $A=\left[\begin{array}{cc}1 & 17 \\ 0 & \pi\end{array}\right]$.
(1) Prove that the right K-coset $K A$ in $G L_{2}(\mathbb{R})$ is $\left\{B \in G L_{2}(\mathbb{R}) \mid \operatorname{det} B=\pi\right\}$.
(2) Prove that the left K-coset $A K=K A$.
(3) Prove that the right K-cosets $K C$ and $K D$ are the same in this case if and only if $\operatorname{det} C=\operatorname{det} D$.
(4) What is the index $\left[G L_{2}(\mathbb{R}): S L_{2}(\mathbb{R})\right]$?

