DEFINITION: A group homomorphism is a map $G \xrightarrow{\phi} H$ between groups that satisfies $\phi(g_1 \circ g_2) = \phi(g_1) \circ \phi(g_2)$.

DEFINITION: An **isomorphism** of groups is a bijective homomorphism.

DEFINITION: The **kernel** of a group homomorphism $G \xrightarrow{\phi} H$ is the subset

 $\ker \phi := \{g \in G \mid \phi(g) = e_H\}.$

A. EXAMPLES OF GROUP HOMOMORPHISMS

- (1) Prove that (one line!) $GL_n(\mathbb{R}) \to \mathbb{R}^{\times}$ sending $A \mapsto \det A$ is a group homomorphism.¹ Find its kernel.
- (2) Show that the canonical map $\mathbb{Z} \to \mathbb{Z}_n$ sending $x \mapsto [x]_n$ is a group homomorphism. Find its kernel.
- (3) Prove that $\nu : \mathbb{R}^{\times} \to \mathbb{R}_{>0}$ sending $x \mapsto |x|$ is a group homomorphism. Find its kernel.
- (4) Prove that $\exp: (\mathbb{R}, +) \to \mathbb{R}^{\times}$ sending $x \mapsto 10^x$ is a group homomorphism. Find its kernel.
- (5) Consider the 2-element group $\{\pm\}$ where + is the identity. Show that the map $\mathbb{R}^{\times} \to \{\pm\}$ sending x to its sign is a homomorphism. Compute the kernel.
- (6) Let $\sigma : D_4 \to \{\pm 1\}$ be the map that sends a symmetry of the square to 1 if the symmetry preserves the orientation of the square and to -1 if the symmetry reserves the orientation of the square. Prove that σ is a group homomorphism with kernel R_4 , the rotations of the square.
- B. KERNEL AND IMAGE. Let $G \xrightarrow{\phi} H$ be a group homomorphism.
 - (1) Prove that $\phi(e_G) = e_H$.
 - (2) Prove that the image of ϕ is a subgroup of H.
 - (3) Prove that the kernel of ϕ is a subgroup of G.
 - (4) Prove that ϕ is injective if and only if ker $\phi = \{e_G\}$.
 - (5) For each homomorphism in A, decide whether or not it is injective. Decide also whether or not the map is an isomorphism.
- C. Classification of Groups of order 2 and 3 $\,$
 - (1) Prove that any two groups of order 2 are isomorphic.
 - (2) Give three natural examples of groups of order 2: one additive, one multiplicative, one using composition. [Hint: Groups of units in rings are a rich source of multiplicative groups, as are various matrix groups. Dihedral groups such as D_4 and its subgroups are a good source of groups whose operation is composition.]
 - (3) Suppose that G is a group with three elements $\{e, a, b\}$. Construct the group operation table for G, explaining the Sudoku property of the group table, and why it holds.
 - (4) Explain why any two groups of order three are isomorphic.
 - (5) Give two natural examples of groups of order 3, one additive, one using composition. Describe the isomorphism between them.
- D. CLASSIFICATION OF GROUPS OF ORDER 4: Suppose we have a group G with four elements a, b, c, e.
 - (1) Prove that we cannot have both ab and ac equal to e. So swapping the names of b and c if necessary, we can assume that $ab \neq e$.
 - (2) Assuming (without loss of generality) that $ab \neq e$, show that ab = c.

¹In this problem, and often, you are supposed to be able to infer what the operation is on each group. Here: the operation for both is multiplication, as these are both groups of units in familiar rings.

- (3) Make a table for the group G, filling in only as much information as you know for sure.
- (4) There are two possible ways to fill in $a^2 = a \circ a$ in your table. Draw two tables, and complete as much of each table as you can. One table can be completely determined, the other can not.
- (5) There should be two possible ways to complete the remaining table. Show that these give isomorphic groups.
- (6) Explain why, up to isomorphism, there are exactly two groups of order 4. We call these the cyclic group of order 4 and the Klein 4-group, respectively. Which is which among your tables? What are good examples of each using additive notation? What are good examples among symmetries of the squares?
- E. Let $\phi: G \to H$ be a group homomorphism.
 - (1) For any $g \in G$, prove that $|\phi(g)| \leq |g|$. [Here |g| means the order of the element g.]
 - (2) For any $g \in G$, prove that $|\phi(g)|$ divides |g|. [Hint: Name the orders! Say $|\phi(g)| = d$ and |g| = n. Use the division algorithm to write n = qd + r, with r < d. What do you want to show about r?]
 - (3) Prove that the map $\mathbb{Z}_4 \to \mathbb{Z}_4$ that fixes [0] and [2] but swaps [1] and [3] is an isomorphism. An isomorphism of a group to itself is also called an **automorphism**.
- F. Let $\phi : R \to S$ be a ring homomorphism.
 - (1) Show that $\phi: (R, +) \to (S, +)$ is a group homomorphism.
 - (2) Show that $\phi : (R^{\times}, \times) \to (S^{\times}, \times)$ is a group homomorphism.
 - (3) Explain how the two different kernels in (1) and (2) give two subsets of R that are groups under two different operations.
 - (4) Consider the canonical ring homomorphism $\mathbb{Z} \to \mathbb{Z}_{24}$ sending $x \mapsto [x]_{24}$. Describe these two kernels explicitly. Prove that one is isomorphic to \mathbb{Z} and one is the trivial group.
 - (5) Show that if m, n are coprime, then $\mathbb{Z}_{nm}^{\times} \cong \mathbb{Z}_n^{\times} \times \mathbb{Z}_m^{\times}$.

THEOREM: If \mathbb{F} is a finite field, then \mathbb{F}^{\times} is a cyclic group.

- G. Verify the theorem above by finding a generator for each of the groups: $\mathbb{Z}_5^{\times}, \mathbb{Z}_7^{\times}, (\mathbb{Z}_2[x]/(x^2+x+1))^{\times}.$
- H. Proof of the theorem.
 - (1) Show that, if |g| is finite and $n \in \mathbb{N}$, then $|g^n| | |g|$.
 - (2) Show that, if |g| = nd, then $|g^n| = d$.
 - (3) Let G be a finite abelian group, and $a, b \in G$. Show that if (|a|, |b|) = 1, then |ab| = |a||b|.
 - (4) Let G be a finite abelian group. Let $c \in G$ be such that $|a| \leq |c|$ for all $a \in G$. Show that |a| ||c| for all $a \in G$.²
 - (5) Let \mathbb{F} be a finite field, and $a, c \in \mathbb{F}^{\times}$. Show that if $|a| \mid |c|$, then a is a root of the polynomial $f(x) = x^{|c|} 1 \in \mathbb{F}[x]$.
 - (6) Conclude the proof of the theorem.

²

²Hint: Suppose that there is some $a \in G$ with |a| < |c|, but $|a| \nmid |c|$. Use the previous parts to find an element with order larger than |c|.