
Math 412. Adventure Sheet on Homomorphisms of Groups.

DEFINITION: A group homomorphism is a map G
φ−→ H between groups that satisfies φ(g1◦g2) =

φ(g1) ◦ φ(g2).

DEFINITION: An isomorphism of groups is a bijective homomorphism.

DEFINITION: The kernel of a group homomorphism G
φ−→ H is the subset

kerφ := {g ∈ G | φ(g) = eH}.

A. EXAMPLES OF GROUP HOMOMORPHISMS

(1) Prove that (one line!) GLn(R) → R× sending A → detA is a group homomorphism.1 Find its
kernel.

(2) Show that the canonical map Z → Zn sending x → [x]n is a group homomorphism. Find its
kernel.

(3) Prove that ν : R× → R>0 sending x → |x| is a group homomorphism. Find its kernel.
(4) Prove that exp : (R,+) → R× sending x → 10x is a group homomorphism. Find its kernel.
(5) Consider the 2-element group {±} where + is the identity. Show that the map R× → {±}

sending x to its sign is a homomorphism. Compute the kernel.
(6) Let σ : D4 → {±1} be the map that sends a symmetry of the square to 1 if the symmetry

preserves the orientation of the square and to −1 if the symmetry reserves the orientation of the
square. Prove that σ is a group homomorphism with kernel R4, the rotations of the square.

Solution.
(1) det(AB) = detA detB from Math 217, so the determinant map is a group homomorphism.

The kernel is SLn(R) := {A ∈ GLn(R) | detA = 1}.
(2) We know [x + y]n = [x]n + [y]n, so x → [x]n is a group homomorphism. The kernel is

nZ := {nk | k ∈ Z}.
(3) ν(xy) = ν(x)ν(y) because |xy| = |x||y| for all real numbers. The kernel is {±1}.
(4) exp(x+y) = 10x+y = 10x10y = exp(x) exp(y) so exp is a group homomorphism. Its kernel

is {0}.
(5) Call the map f . So f(x) = + if x is positive and f(x) = − if x is negative. We know

f(xy) = + if x, y are both positive, and f(xy) = − if one of them is positive and the other
negative. Thus f(xy) = f(x)f(y) according to the group operation we put on the set {±}.
Since the identity element of the group {±} is +, the kernel is R>0, the set of all positive real
numbers.

(6) Rotations preserve orientation, and reflections change it. That is, φ({e, r1, r2, r3}) = 1 and
φ({x, y, d, a}) = −1. Since the product of two rotations is a rotation, the product of two
reflections is a rotation, and the product of a rotation and a reflection is a reflection, this says
the map is a homomorphism. The kernel is the rotation subgroup R4 = {e, r1.r2, r3}.

B. KERNEL AND IMAGE. Let G
φ−→ H be a group homomorphism.

(1) Prove that φ(eG) = eH .
(2) Prove that the image of φ is a subgroup of H .

1In this problem, and often, you are supposed to be able to infer what the operation is on each group. Here: the operation
for both is multiplication, as these are both groups of units in familiar rings.
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(3) Make a table for the group G, filling in only as much information as you know for sure.
(4) There are two possible ways to fill in a2 = a ◦ a in your table. Draw two tables, and complete as

much of each table as you can. One table can be completely determined, the other can not.
(5) There should be two possible ways to complete the remaining table. Show that these give iso-

morphic groups.
(6) Explain why, up to isomorphism, there are exactly two groups of order 4. We call these the cyclic

group of order 4 and the Klein 4-group, respectively. Which is which among your tables? What
are good examples of each using additive notation? What are good examples among symmetries
of the squares?

E. Let φ : G → H be a group homomorphism.
(1) For any g ∈ G, prove that |φ(g)|  |g|. [Here |g| means the order of the element g.]
(2) For any g ∈ G, prove that |φ(g)| divides |g|. [Hint: Name the orders! Say |φ(g)| = d and |g| = n. Use

the division algorithm to write n = qd+ r, with r < d. What do you want to show about r?]
(3) Prove that the map Z4 → Z4 that fixes [0] and [2] but swaps [1] and [3] is an isomorphism. An

isomorphism of a group to itself is also called an automorphism.

F. Let φ : R → S be a ring homomorphism.
(1) Show that φ : (R,+) → (S,+) is a group homomorphism.
(2) Show that φ : (R×,×) → (S×,×) is a group homomorphism.
(3) Explain how the two different kernels in (1) and (2) give two subsets of R that are groups under

two different operations.
(4) Consider the canonical ring homomorphism Z → Z24 sending x → [x]24. Describe these two

kernels explicitly. Prove that one is isomorphic to Z and one is the trivial group.
(5) Show that if m,n are coprime, then Z×

nm
∼= Z×

n × Z×
m.

THEOREM: If F is a finite field, then F× is a cyclic group.

G. Verify the theorem above by finding a generator for each of the groups: Z×
5 ,Z×

7 , (Z2[x]/(x
2 + x+ 1))×.

H. Proof of the theorem.
(1) Show that, if |g| is finite and n ∈ N, then |gn| | |g|.
(2) Show that, if |g| = nd, then |gn| = d.
(3) Let G be a finite abelian group, and a, b ∈ G. Show that if (|a|, |b|) = 1, then |ab| = |a||b|.
(4) Let G be a finite abelian group. Let c ∈ G be such that |a|  |c| for all a ∈ G. Show that |a| | |c|

for all a ∈ G.2

(5) Let F be a finite field, and a, c ∈ F×. Show that if |a| | |c|, then a is a root of the polynomial
f(x) = x|c| − 1 ∈ F[x].

(6) Conclude the proof of the theorem.

2Hint: Suppose that there is some a ∈ G with |a| < |c|, but |a| ∤ |c|. Use the previous parts to find an element with order
larger than |c|.
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(2) The Sudoku property says that no row (or column) of the table can have the same element
appearing more than once. Indeed, suppose some row of a group table has the same entry
twice. If the row is telling us a  −−, then there must be two columns, indexed by say b
and c, such that a  b = a  c. But now multiply both side by a−1 to see that b = c. This
contradiction tells us that the row can not have any element appearing more than once. A
similar argument works for columns.

(3) Make the table:
♥ e a b
e e a b
a a
b b

We see that we can not have a2 = a because that would force a = e. Likewise, if a2 = e,
then the Sudoku property would force ab = b, which again forces a = e. So it must be that
a2 = b. Now the Sudoku property force that ab = e. Finally there is only one way to fill in
the next and final row. So the table must be

♥ e a b
e e a b
a a b e
b b e a

(4) So any group of three elements, after renaming, is isomorphic to this one.
(5) (Z3,+) is an additive group of order three. The group R3 of rotational symmetries of an

equilateral triangle is another group of order 3. Its elements are the rotation through 1200,
the rotation through 2400, and the identity. An isomorphism between them sends [1] to the
rotation through 120. This forces [2] → rotation through 240, and [0] → e.

D. CLASSIFICATION OF GROUPS OF ORDER 4: Suppose we have a group G with four elements a, b, c, e.
(1) Prove that we cannot have both ab and ac equal to e. So swapping the names of b and c if

necessary, we can assume that ab ∕= e.
(2) Assuming (without loss of generality) that ab ∕= e, show that ab = c.
(3) Make a table for the group G, filling in only as much information as you know for sure.
(4) There are two possible ways to fill in a2 = a ◦ a in your table. Draw two tables, and complete as

much of each table as you can. One table can be completely determined, the other can not.
(5) There should be two possible ways to complete the remaining table. Show that these give iso-

morphic groups.
(6) Explain why, up to isomorphism, there are exactly two groups of order 4. We call these the cyclic

group of order 4 and the Klein 4-group, respectively. Which is which among your tables? What
are good examples of each using additive notation? What are good examples among symmetries
of the squares?

Solution.
(1) If ab = ac = e, then multiplying by a−1 on the left, we see b = c.
(2) Assume ab ∕= e. That means ab = c, since both ab = a and ab = b lead to contradictions:

ab = a gives b = e and ab = b given a = e, both impossible.
(3) Make the table:

♠ e a b c
e e a b c
a a c
b b
c c
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(4) So either a2 = e or a2 = b. Both give valid groups whose tables can be filled out using the
Sudoku property.

If a2 = b, we get

♥ e a b c
e e a b c
a a b c e
b b c e a
c c e a b

. If a2 = e, we have

♣ e a b c
e e a b c
a a e c b
b b c
c c b

(5) Finally, we have either

♣ e a b c
e e a b c
a a e c b
b b c a e
c c b e a

or

♦ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

.

♣ is isomorphic to ♥: switch the a and b elements.
(6) So any group of four elements, after renaming, is isomorphic to one or the other of these.

The first is the cyclic group of order 4, which has two elements of order 4, and one of order
2. (The identity is order 1 in any group). This is represented by table ♥. The second is the
Klein four group, which has 3 elements of order 2.

(7) Good representatives are (Z2 × Z2,+) and (Z4,+). We can also find nice representatives
in D4. The group R4 of rotational symmetries of a square is a cyclic group of order 4, so
isomorphic to Z4. The subgroup generated by the vertical and horizonal reflections is an
example of a Klein 4-group, so isomorphic to Z2 × Z2.

E. Let φ : G → H be a group homomorphism.
(1) For any g ∈ G, prove that |φ(g)|  |g|. [Here |g| means the order of the element g.]
(2) For any g ∈ G, prove that |φ(g)| divides |g|. [Hint: Name the orders! Say |φ(g)| = d and |g| = n. Use

the division algorithm to write n = qd+ r, with r < d. What do you want to show about r?]
(3) Prove that the map Z4 → Z4 that fixes [0] and [2] but swaps [1] and [3] is an isomorphism. An

isomorphism of a group to itself is also called an automorphism.

Solution.
(1) Say g has order n. So gn = eG. This means φ(gn) = (φ(g))n = eH . So φ(g) has order at

most n.
(2) Say φ(g) has order d. Then write n = dq + r for some remainder 0  r  d − 1. So

eH = (φ(g))n = (φ(g))qd+r = ((φ(g))d)q(φ(g))r = (φ(g))r. But this says that φ(g) has
order at most r < d, a contradiction unless r = 0. So d|n.

(3) Call the map f . We need to check that f([a]4 + [b]4) = f([a]4) + f([b]4) for all [a]4, [b]4.
There are 16 different pairs of values for [a] and [b] to check, but since the group Z4 is
abelian, we need only check 8 of these. Also, if the [a] and [b] are both either [0] or [2],
it is true since f does nothing to [0] or [2]. The five remaining things to check are that
f([1] + [3]) = f([1]) + f [3]) which is true since both are zero, f([0] + [3]) = f([0]) + f [3])
which is true since both are [1], f([0] + [1]) = f([0]) + f [1]) which is true since both are [3],
f([2]+ [1]) = f([2])+f [1]) which is true since both are [1], and f([2]+ [3]) = f([2])+f [3])
which is true since both are [3].

F. Let φ : R → S be a ring homomorphism.
(1) Show that φ : (R,+) → (S,+) is a group homomorphism.
(2) Show that φ : (R×,×) → (S×,×) is a group homomorphism.
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(3) Explain how the two different kernels in (1) and (2) give two subsets of R that are groups under
two different operations.

(4) Consider the canonical ring homomorphism Z → Z24 sending x → [x]24. Describe these two
kernels explicitly. Prove that one is isomorphic to Z and one is the trivial group.

(5) Show that if m,n are coprime, then Z×
nm

∼= Z×
n × Z×

m.

Solution.
(1) This is immediate from the definition of ring homomorphism, as φ(x+ y) = φ(x) + φ(y) is

one of the axioms.
(2) This also from the defintion of ring homomorphism, as φ(xy) = φ(x)φ(y) is one of the

axioms. We do need to check that the target is in the right place, though. That is, we need to
know that a unit goes to a unit under a ring homomorphism. We proved this before.

(3) The kernels of the two maps in (1) and (2) are both subsets of R. But they have a different
binary operation on them, namely + and ×.

(4) The kernel of the canonical map is the additive 24Z. The map Z → 24Z sending n → 24n
is easily checked to be a bijective homomorphism, so isomorphism. The map of units is
Z× = {±1} → Z×

24. Since 1 ∕= −1 in Z24, the map is injective, and the kernel is the trivial
group {1}.

(5) This follows from the ring isomorphism Zmn
∼= Zm × Zn.

THEOREM: If F is a finite field, then F× is a cyclic group.

G. Verify the theorem above by finding a generator for each of the groups: Z×
5 ,Z×

7 , (Z2[x]/(x
2 + x+ 1))×.

Solution. Z×
5 = 〈2〉, Z×

7 = 〈3〉, (Z2[x]/(x
2 + x+ 1))× = 〈x〉.

H. Proof of the theorem.
(1) Show that, if |g| is finite and n ∈ N, then |gn| | |g|.
(2) Show that, if |g| = nd, then |gn| = d.
(3) Let G be a finite abelian group, and a, b ∈ G. Show that if (|a|, |b|) = 1, then |ab| = |a||b|.
(4) Let G be a finite abelian group. Let c ∈ G be such that |a|  |c| for all a ∈ G. Show that |a| | |c|

for all a ∈ G.2

(5) Let F be a finite field, and a, c ∈ F×. Show that if |a| | |c|, then a is a root of the polynomial
f(x) = x|c| − 1 ∈ F[x].

(6) Conclude the proof of the theorem.

Solution.
(1) Theorem 7.9 (a) in the book
(2) Theorem 7.9 (c) in the book
(3) For the inequality |ab|  |a||b|, we show that (ab)|a||b| = e. Using the abelian axiom,

(ab)|a||b| = a|a||b|b|a||b| = (a|a|)|b|(b|b|)|a| = e. For the other inequality, suppose that (ab)k = e.
Then akbk = e, so ak = b−k. Thus, ak|b| = (ak)|b| = (b−k)|b| = (b|b|)k = e. We then

2Hint: Suppose that there is some a ∈ G with |a| < |c|, but |a| ∤ |c|. Use the previous parts to find an element with order
larger than |c|.
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have |a||k|b| by part (1), and since (|a|, |b|) = 1, |a||k. Likewise, |b||k, and again using
coprimeness, |a||b||k. It follows that |a||b|  |ab|, and equality must hold.

(4) Suppose that there is some a ∈ G with |a| < |c|, but |a| ∤ |c|. Write |a| = prm, and |c| = psn,
with (p,m) = (p, n) = 1 and r > s for some prime p. By part (2), |am| = pr and |cps | = n.
Then, by part (3), |amcps | = prn. But, prn > |c|, which is a contradiction. Therefore, there
is no such a.

(5) The assumption implies that a|c| = 1.
(6) Let t = max{|g| | g ∈ F×}  |F×|. By part (4), |a| | t for all a ∈ F×. By part (5), this means

that every element of F× is a root of f(x) = xt − 1. This is a polynomial in a polynomial
ring over a field; since it has degree t, it has at most t roots, so |F×|  t. Any element has
order at most t, so we see that equality holds. Thus, there is an element of order |F×|, so the
group is cyclic.


