
Winter 2019 Math 412

Homework #10

Problems to hand in on Thursday, April 11, in the beginning of class. Write your answers out
carefully, staple pages, and write your name and section number on each page.

1) The center of a group G is the set

Z(G) = {g ∈ G | gh = hg for all h ∈ G}

(a) Show that the center of G is an abelian subgroup of G.

(b) Show that the center of G is a normal subgroup of G.

(c) Show that Z(G) = G if and only if G is abelian.

(d) Compute the center of D4.

(e) Compute the center of S3.

(f) Compute the center of GL2(R).

Solution.

(a) If z, z′ ∈ Z(G), and g ∈ G, then g(zz′) = (gz)z′ = (zg)z′ = z(gz′) = z(z′g) = (zz′)g,
so zz′ ∈ Z(G). Also, if z ∈ Z(G) and g ∈ G, then zz−1gz = gz = zg = zgz−1z.
Multiplying by z−1 on the left and right gives z−1g = gz−1, so z−1 ∈ Z(G). Finally,
e ∈ Z(G), so it is a subgroup. It’s clear that it’s abelian, since all the elements commute
with each other by definition.

(b) If g ∈ G and z ∈ Z(G), then gzg−1 = zgg−1 = z ∈ Z(G). It follows that Z(G) is
normal.

(c) Both conditions mean that any pair of elements commute.

(d) We can use an operation table that we made before to find that the center is the identity
and the rotation by π.

(e) We can use an operation table to see that the center consists only if the identity.

(f) The center is the set of diagonal matrices

[
a 0
0 a

]
with a 6= 0. It is clear that these are in

the center, since multiplying such a matrix by M on the left or the right yields aM . To

see that nothing else is in the center, let M =

[
a b
c d

]
, A =

[
1 1
0 1

]
, and B =

[
1 0
1 1

]
.

If M is in the center, then AM −MA =

[
c d− a
0 −c

]
and BM −MB =

[
−b 0
a− d b

]
are

zero, which implies that M is of the correct form.

2) Any group G acts on itself by conjugation: g · h = ghg−1. The orbits of this action are called
conjugacy classes.

(a) Show h ∈ Z(G) if and only h is a fixed point of the conjugation action.

(b) Show a subgroup H of G is normal if and only if it is a disjoint union of conjugacy classes.

(c) Describe the partition of S5 into its conjugacy classes.
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(d) Show that the only nontrivial normal subgroup of S5 is A5.
1

Solution.

(a) If h ∈ Z(G), then for all g ∈ G, ghg−1 = hgg−1 = h, so h is a fixed point of the
conjugation action. Conversely, if h is a fixed point of the conjugation action, then
ghg−1 = h for all g ∈ G, so gh = hg for all g ∈ G, so g ∈ Z(G).

(b) LetH be normal. Let h ∈ H. We need to show that the orbit of h under the conjugation
action is contained in H. This follows immediately from the fact that gHg−1 ⊆ H for
a normal subgroup H.

Conversely, suppose that the subgroup H is a disjoint union of conjugacy classes. If
h ∈ H, this means that its entirely conjugacy class is contained in H, so g ·h = ghg−1 ∈
H for all g ∈ G. Thus, gHg−1 ⊆ H, so H is normal.

(c) We showed in an earlier problem set that τ( 1 2 )τ−1 = ( τ(1) τ(2) ). We observe more
generally that for any a ≤ 5, τ( 1 · · · a )τ−1 = ( τ(1) · · · τ(a) ). We check this by
plugging in the elements 1, 2, 3, 4, 5 to the two functions, in two separate cases.

Case 1: if i 6= τ(j) for j = 1, . . . , a, then τ−1(i) 6= 1, . . . , a, so the cycle ( 1 · · · a )
fixes τ−1(i). Altogether, we see that τ( 1 · · · a )τ−1(i) = i in this case. Similarly,
( τ(1) · · · τ(a) ) also fixes i, since it is cyclically permuting a things, none of which is
i.

Case 2: if i = τ(j) for some j = 1, . . . , a, then τ−1(i) = j. Then, the element
( 1 · · · a )τ−1 sends i to j + 1 if j < a and 1 if j = a. Finally, composing with τ ,
τ( 1 · · · a )τ−1 sends i = τ(j) to τ(j + 1) if j < a and τ(1) if j = a. This is the same
value as ( τ(1) · · · τ(a) ).

The identity is in the center, so it is its own conjugacy class. Now, by conjugating
( 1 2 ) we can obtain any 2-cycle, and we only obtain 2-cycles, so the set of 2-cycles is
a conjugacy class. Similarly, by conjugating ( 1 2 3 ) we can obtain any 3-cycle, and
only 3-cycles, so the set of 3-cycles is a conjugacy class. Likewise with 4-cycles and
5-cycles. The other two conjugacy classes are: pairs of disjoint 2-cycles and products
of a disjoint 3-cycle and 2-cycles. We compute the sizes as on the worksheets in class:

e 1
(• •) 10

(• • •) 20
(• • • •) 30

(• • • • •) 24
(• •)(• •) 15

(• • •)(• •) 20

(d) Let H be a normal subgroup of S5. A normal subgroup is a disjoint union of conjugacy
classes, including the identity. The order of H must divide 120 by Lagrange, so we
need numbers from the above table that add up to a divisor of 120.

First, the only odd divisors are 1, 3, 5, 15. No combination of the numbers above that
includes the number 1 adds up to any of these. Thus, the sum must be even, and

1Hint: By (b), a normal subgroup is a union of conjugacy classes, one of which is the identity. Use the sizes of
these conjugacy classes from (c), plus Lagrange’s Theorem, to narrow down the list, and finally show that on your
shortlist, the only collection closed under products is A5.
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this means that we must include the conjugacy class (• •)(• •). Now we consider the
divisors of 120 that are at least 16, and not 120 itself: these are 20, 24, 30, 40, 60. None
of these is congruent to 6 modulo 10, so we must also include the class (• • • • •).
Now, the union of the classes e, (• •)(• •), and (• • • • •) has order 40, but it isn’t
a subgroup! To see this, note that (1 2)(3 4)(1 2 3 4 5) = (2 4 5). This computation
shows that H must contain the conjugacy class (• • •) as well.

So far we have shown that any normal subgroup must contain all of the conjugacy
classes e, (• •)(• •), (• • •), and (• • • • •). The union of these classes is A5, which
we know is a normal subgroup. Its order is 60, and there are no larger proper divisors
of 120, so this must be the only proper normal subgroup.

3) Let p be a prime, and G be a finite group with p
∣∣ |G|. Consider the set

X = {(g1, . . . , gp) ∈ G× · · · ×G︸ ︷︷ ︸
p−times

| g1g2 · · · gp = e}.

The group Zp acts on X by rotating elements: [i]p · (g1, . . . , gp) = (g1+i, . . . , gp, g1, . . . , gi).

(a) Show that X has |G|p−1 elements, so p
∣∣ |X|.

(b) Show that the orbits of the action of Zp on X either have 1 or p elements, and the orbits
of order 1 are either (e, e, . . . , e) or of the form (g, g, . . . , g) with |g| = p.

(c) Show that G contains an element of order p.

Solution.

(a) A tuple (g1, . . . , gp) ∈ X is completely determined by its first p− 1 coordinates, which
can be anything. Given g1, . . . , gp−1, gp = (g1 · · · gp−1)−1. There are |G| possibilities
for each one of those p− 1 coordinates. Then |X| = |G|p−1, which is divisible by p.

(b) By the Orbit-Stabilizer Theorem, the number of elements in an order divides |Zp| = p,
so the only possibilities for the sizes of each order are 1 or p. Orbits of size 1 correspond
to fixed points of our action; clearly, (e, . . . , e) is a fixed point. Otherwise, if (g1, . . . , gp)
is a fixed point for our action, then (g1, . . . , gp) = [1]p · (g1, . . . , gp) = (g2, ·, gp, g1), so
g1 = g2 = . . . gp := g. Moreover, gp = g1 · · · gp = e. We conclude that orbits of size one
(besides the obvious one) correspond to elements of G of order p.

(c) There exists an element of order p if and only if there are at least two orbits of size 1.
Say there are n orbits of size 1 and m orbits of size p. Then n+ pm = |X|. Since |X|
and pm are divisible by p, so is n. Since p > 2 and n > 1, we conclude that n > 2. This
shows there is at least one non-trivial element of G of order p — in fact, we showed
there are at least p− 1 elements of order p.
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