Homework #11

Problems to hand in on Thursday, April 18, in the beginning of class. Write your answers out carefully, staple pages, and write your name and section number on each page.

- 1) Consider the group $G = \mathbb{Z}_{40}^{\times}$.
 - (a) G has 16 elements. List them.
 - (b) The subgroup $H = \langle [7] \rangle$ has four elements. List the four elements of G/H. Note that each element of G/H is a set; for each of these sets, list all of its elements.
 - (c) Use the definition of the group structure of G/H to create a multiplication table for the quotient group G/H.
- 2) Let G be an abelian group, not necessarily finite.
 - (a) Show that the set T of elements of G of finite order forms a subgroup of G.
 - (b) Show that every nonidentity element of G/T has infinite order.
- 3) Let O(2) denote the subgroup of orthogonal 2×2 matrices in $M_2(\mathbb{R})$.¹
 - (a) Compute the kernel and the image of the determinant homomorphism det: $O(2) \to \mathbb{R}^{\times}$.
 - (b) Use part (a) to show that $O(2)/SO(2) \cong \{\pm 1\}$. Describe the elements of O(2)/SO(2): what sets of linear transformations from $\mathbb{R}^2 \to \mathbb{R}^2$ are they?
 - (c) Find two elements $M, N \in O(2)$ of finite order whose product has infinite order. Conclude that the set of elements of finite order in O(2) do not form a subgroup.

THEOREM 9.7: FUNDAMENTAL STRUCTURE THEOREM FOR FINITE ABELIAN GROUPS: Let G be a finite abelian group. Then G is isomorphic to a group of the form

$$\mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times \mathbb{Z}_{p_3^{a_3}} \times \dots \times \mathbb{Z}_{p_n^{a_n}}$$

where $p_1, p_2, \ldots p_n$ are (not necessarily distinct!) prime numbers. Moreover, the product is unique, up to re-ordering the factors.

- 4) (a) Suppose that G is abelian and has order 8. Use the Structure Theorem for Finite Abelian Groups to show that up to isomorphism, G must be isomorphic to one of three possible groups, each a product of cyclic groups of prime power order.
 - (b) Determine the number of abelian groups of order 12, up to isomorphism.
 - (c) For p prime, how many isomorphism types of abelian groups of order p^5 ?
 - (d) If an abelian group of order 100 has no element of order 4, prove that G contains a Klein 4-group.

¹If you aren't familiar with this notion from 217, it means matrices $M = [\vec{v} \cdot \vec{w}]$ with $\vec{v} \cdot \vec{v} = \vec{w} \cdot \vec{w} = 1$ and $\vec{v} \cdot \vec{w} = 0$.