Homework #3

Problems to hand in on Thursday, February 7, in the beginning of class. Write your answers out carefully, staple pages, and write your name and section number on each page.

- 1) Prove that there is no ring homomorphism $\mathbb{Z}_n \longrightarrow \mathbb{Z}$ for any integer n > 1.
- 2) Let R be a ring and S and T subrings of R.
 - (a) Prove or disprove: $S \cap T$ is a subring of R.
 - (b) Prove or disprove: $S \cup T$ is a subring of R.
- 3) An element $r \neq 0$ in a commutative ring R is said to be a *zerodivisor* if there exists a nonzero element $s \in R$ such that rs = 0.
 - (a) Given a nonzero element $r \in R$, prove that r is not a zerodivisor if and only if the map $R \longrightarrow R$ given by multiplication by r, meaning the map $s \mapsto rs$, is injective.
 - (b) Describe all the zerodivisors in \mathbb{Z}_n in terms of the prime factorization of n or their greatest common divisor with n.
- 4) A unit u in a ring R is an invertible element, meaning there exists $s \in R$ such that su = us = 1.
 - (a) Show that if u is a unit in R, then u is not a zerodivisor.
 - (b) If $u \neq 0$ is not a zerodivisor in a commutative ring R, does that imply it is a unit?
 - (c) Show that if a and b are units, then ab is a unit.
 - (d) Prove or disprove: the set of all units in a commutative ring R forms a subring.
 - (e) Describe all the units in \mathbb{Z}_n in terms of the prime factorization of n or their greatest common divisor with n.