Homework #6

Problems to hand in on Thursday, March 14, in the beginning of class. Write your answers out carefully, staple pages, and write your name and section number on each page.

- 1) Let R be a commutative ring. Recall that $e \in R$ is an idempotent if $e^2 = e$.
 - a) Show that if e is an idempotent, then so is 1 e.

Fact: If $e \neq 0, 1$ is an idempotent, then the ideal generated by e is a ring of its own, with the same multiplication and addition structure as R, but with a *different* multiplicative identity: e. We write Re to represent this ring.

b) Show that the map

$$R \xrightarrow{\varphi} Re \times R(1-e)$$
$$r \longrightarrow (re, r-re)$$

is a ring isomorphism.

- c) Show that a ring R is isomorphic to a direct product of two nonzero rings if and only if R contains an idempotent element other than 0_R and 1_R .
- 2) Recall: an ideal $P \neq R$ in a ring R is prime if $ab \in P$ implies $a \in P$ or $b \in P$.
 - a) Prove that P is prime if and only if R/P is a domain.
 - b) Use the first isomorphism theorem to show that the ideals (x) and (2, x) in $\mathbb{Z}[x]$ are prime ideals.¹²
 - c) Show that the ideal (4, x) in $\mathbb{Z}[x]$ is not prime.
 - d) Show that the ideal $(2,\sqrt{10})$ in $\mathbb{Z}[\sqrt{10}] = \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{R}$ is prime.
 - e) Is the ideal (2) in $\mathbb{Z}[i]$ a prime ideal?

¹Hint: For the first one, consider the homomorphism $\mathbb{Z}[x] \to \mathbb{Z}$ "evaluate at zero".

²Reminder: (2, x) refers to the ideal generated by 2 and x.