DEFINITION: Let *I* be an ideal of a ring *R*. Consider arbitrary $x, y \in R$. We say that *x* is **congruent** to *y* **modulo** *I* if $x - y \in I$.

DEFINITION: The congruence class of y modulo I is the set $\{y+z \mid z \in I\}$ of all elements of R congruent to y modulo I, which we by y + I.

The set of all congruence classes of R modulo I is denoted R/I.

CAUTION: The elements of R/I are sets.

DEFINITION: Let I be an ideal of a ring R. The **Quotient Ring** of R by I is the set R/I of all congruence classes modulo I in R, together with binary operations + and \cdot defined by

(x+I) + (y+I) := (x+y) + I $(x+I) \cdot (y+I) := (x \cdot y) + I.$

A. IDEALS IN SOME FAMILIAR RINGS. It turns out that we can classify ALL ideals in some special rings!

- (1) Let \mathbb{F} be a field. Show that the only two ideals in \mathbb{F} are and $\{0\}$.
- (2) Let I be an ideal in \mathbb{Z} , and suppose that $I \neq \{0\}$. Prove that I = (c), where c is the smallest positive integer in I. Conclude that every ideal in \mathbb{Z} is a principal ideal.
- (3) Let \mathbb{F} be a field, and $R = \mathbb{F}[x]$. Let I be an ideal in R, and suppose that $I \neq \{0\}$. Prove that I = (f(x)), where f(x) is the monic polynomial of smallest degree in I. Conclude that every ideal in R is a principal ideal.
- (4) Is every ideal in every ring a principal ideal?

B. THE QUOTIENT RING R/I. Fix any ring R and any ideal $I \subseteq R$.

- (1) Explain what needs to be checked in order to verify that the addition and multiplication defined above on the set R/I are **well-defined**. Now check it for at least one of the operations.
- (2) Explain briefly why the ring axioms (for example, associativity) for each operation on R/I follow easily from those for R.
- (3) What are the additive and multiplicative identity elements in R/I?
- (4) What is the additive inverse of y + I in R/I?
- (5) Explain why R/I is commutative whenever R is commutative.
- (6) Prove that the **canonical map** $R \to R/I$ sending $r \mapsto r + I$ is a *surjective homomorphism*. Find its kernel.
- (7) Consider the ring $R = \mathbb{Z}$ and the ideal I = (n). What is the quotient ring R/I?
- C. Let $R = \mathbb{Z}_6$. Consider the subset $I = \{[0]_6, [2]_6, [4]_6\}$.
 - (1) Prove that I is an ideal of \mathbb{Z}_6 .
 - (2) List out all elements of \mathbb{Z}_6 in the congruence classes of $[0]_6$, $[2]_6$, and $[1]_6$.
 - (3) Write out the subset $[0]_6 + I$ of \mathbb{Z}_6 in set notation. Ditto for $[1]_6 + I$.
 - (4) Remember that the elements of R/I are *subsets* of the ring R. The ring \mathbb{Z}_6/I has **two** elements, both are subsets of \mathbb{Z}_6 . What are these two elements in this case? What is the standard "quotient ring" notation for these elements of \mathbb{Z}_6/I ? What is the simplest possible notation for these two elements of \mathbb{Z}_6/I , allowing "abuses" of notation?
 - (5) Prove that $\mathbb{Z}_6/I \cong \mathbb{Z}_2$ by describing an explicit isomorphism. Think about how the corresponding elements of \mathbb{Z}_2 and \mathbb{Z}_6/I under the isomorphism are "the same" or different.

- D. QUOTIENTS OF POLYNOMIAL RINGS.
 - (1) Let \mathbb{F} be a field, and $R = \mathbb{F}[x]$. Let $I = (f(x)) = \{g(x)f(x) \mid g(x) \in R\}$ be an ideal. Show that every element $h(x) + I \in R/I$ contains exactly one polynomial t(x) such that t(x) = 0 or $\deg(t(x)) < \deg(f(x))$.
 - (2) How many elements are in $\mathbb{Z}_2[x]/(x^2 + x + 1)$?
 - (3) Write out addition and multiplication tables for the quotient ring in the previous part. Is it a domain? Is it a field?
 - (4) Prove, in general, that if \mathbb{F} is a field, $R = \mathbb{F}[x]$, and f(x) is irreducible, then R/(f(x)) is a field.

E. IDEALS IN QUOTIENT RINGS. The ideals in R/I are in one-to-one correspondence with the ideals in R that contain I.

- (1) Suppose that $J \supseteq I$ is an ideal in R. Show the image of J by the canonical homomorphism $\pi : R \longrightarrow R/I$ is an ideal in R/I.
- (2) Consider any ideal a in R/I. Show that the set

$$J = \pi^{-1}(a) = \{r \in R : r + I \in a\}$$

is an ideal in R that contains I.

(3) What are the ideals in \mathbb{Z}_{42} ? What ideals in \mathbb{Z} do they correspond to?