Math 412. Adventure sheet on quotient rings

Definition: Let I be an ideal of a ring R. Consider arbitrary $x, y \in R$. We say that x is congruent to y modulo I if $x-y \in I$.

DEFINITION: The congruence class of y modulo I is the set $\{y+z \mid z \in I\}$ of all elements of R congruent to y modulo I, which we by $y+I$.
The set of all congruence classes of R modulo I is denoted R / I.
Caution: The elements of R / I are sets.
Definition: Let I be an ideal of a ring R. The Quotient Ring of R by I is the set R / I of all congruence classes modulo I in R, together with binary operations + and \cdot defined by

$$
(x+I)+(y+I):=(x+y)+I \quad(x+I) \cdot(y+I):=(x \cdot y)+I
$$

A. Ideals in some familiar rings. It turns out that we can classify ALL ideals in some special rings!
(1) Let \mathbb{F} be a field. Show that the only two ideals in \mathbb{F} are and $\{0\}$.
(2) Let I be an ideal in \mathbb{Z}, and suppose that $I \neq\{0\}$. Prove that $I=(c)$, where c is the smallest positive integer in I. Conclude that every ideal in \mathbb{Z} is a principal ideal.
(3) Let \mathbb{F} be a field, and $R=\mathbb{F}[x]$. Let I be an ideal in R, and suppose that $I \neq\{0\}$. Prove that $I=(f(x))$, where $f(x)$ is the monic polynomial of smallest degree in I. Conclude that every ideal in R is a principal ideal.
(4) Is every ideal in every ring a principal ideal?
B. The Quotient Ring R / I. Fix any ring R and any ideal $I \subseteq R$.
(1) Explain what needs to be checked in order to verify that the addition and multiplication defined above on the set R / I are well-defined. Now check it for at least one of the operations.
(2) Explain briefly why the ring axioms (for example, associativity) for each operation on R / I follow easily from those for R.
(3) What are the additive and multiplicative identity elements in R / I ?
(4) What is the additive inverse of $y+I$ in R / I ?
(5) Explain why R / I is commutative whenever R is commutative.
(6) Prove that the canonical map $R \rightarrow R / I$ sending $r \mapsto r+I$ is a surjective homomorphism. Find its kernel.
(7) Consider the ring $R=\mathbb{Z}$ and the ideal $I=(n)$. What is the quotient ring R / I ?
C. Let $R=\mathbb{Z}_{6}$. Consider the subset $I=\left\{[0]_{6},[2]_{6},[4]_{6}\right\}$.
(1) Prove that I is an ideal of \mathbb{Z}_{6}.
(2) List out all elements of \mathbb{Z}_{6} in the congruence classes of $[0]_{6},[2]_{6}$, and $[1]_{6}$.
(3) Write out the subset $[0]_{6}+I$ of \mathbb{Z}_{6} in set notation. Ditto for $[1]_{6}+I$.
(4) Remember that the elements of R / I are subsets of the ring R. The ring \mathbb{Z}_{6} / I has two elements, both are subsets of \mathbb{Z}_{6}. What are these two elements in this case? What is the standard "quotient ring" notation for these elements of \mathbb{Z}_{6} / I ? What is the simplest possible notation for these two elements of \mathbb{Z}_{6} / I, allowing "abuses" of notation?
(5) Prove that $\mathbb{Z}_{6} / I \cong \mathbb{Z}_{2}$ by describing an explicit isomorphism. Think about how the corresponding elements of \mathbb{Z}_{2} and \mathbb{Z}_{6} / I under the isomorphism are "the same" or different.
D. Quotients of polynomial rings.
(1) Let \mathbb{F} be a field, and $R=\mathbb{F}[x]$. Let $I=(f(x))=\{g(x) f(x) \mid g(x) \in R\}$ be an ideal. Show that every element $h(x)+I \in R / I$ contains exactly one polynomial $t(x)$ such that $t(x)=0$ or $\operatorname{deg}(t(x))<\operatorname{deg}(f(x))$.
(2) How many elements are in $\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)$?
(3) Write out addition and multiplication tables for the quotient ring in the previous part. Is it a domain? Is it a field?
(4) Prove, in general, that if \mathbb{F} is a field, $R=\mathbb{F}[x]$, and $f(x)$ is irreducible, then $R /(f(x))$ is a field.
E. Ideals in Quotient rings. The ideals in R / I are in one-to-one correspondence with the ideals in R that contain I.
(1) Suppose that $J \supseteq I$ is an ideal in R. Show the image of J by the canonical homomorphism $\pi: R \longrightarrow R / I$ is an ideal in R / I.
(2) Consider any ideal a in R / I. Show that the set

$$
J=\pi^{-1}(a)=\{r \in R: r+I \in a\}
$$

is an ideal in R that contains I.
(3) What are the ideals in \mathbb{Z}_{42} ? What ideals in \mathbb{Z} do they correspond to?

