Math 412. Adventure sheet on quotient rings

Definition: Let I be an ideal of a ring R. Consider arbitrary $x, y \in R$. We say that x is congruent to y modulo I if $x-y \in I$.

DEFINITION: The congruence class of y modulo I is the set $\{y+z \mid z \in I\}$ of all elements of R congruent to y modulo I, which we by $y+I$.
The set of all congruence classes of R modulo I is denoted R / I.
Caution: The elements of R / I are sets.
Definition: Let I be an ideal of a ring R. The Quotient Ring of R by I is the set R / I of all congruence classes modulo I in R, together with binary operations + and \cdot defined by

$$
(x+I)+(y+I):=(x+y)+I \quad(x+I) \cdot(y+I):=(x \cdot y)+I
$$

A. Ideals in some familiar rings. It turns out that we can classify ALL ideals in some special rings!
(1) Let \mathbb{F} be a field. Show that the only two ideals in \mathbb{F} are and $\{0\}$.
(2) Let I be an ideal in \mathbb{Z}, and suppose that $I \neq\{0\}$. Prove that $I=(c)$, where c is the smallest positive integer in I. Conclude that every ideal in \mathbb{Z} is a principal ideal.
(3) Let \mathbb{F} be a field, and $R=\mathbb{F}[x]$. Let I be an ideal in R, and suppose that $I \neq\{0\}$. Prove that $I=(f(x))$, where $f(x)$ is the monic polynomial of smallest degree in I. Conclude that every ideal in R is a principal ideal.
(4) Is every ideal in every ring a principal ideal?

Solution.

(1) Let $I \neq\{0\}$ be an ideal in \mathbb{F}. There exists some nonzero $c \in I$, and since \mathbb{F} is a field, c is invertible. Then $1=c^{-1} c \in I$, and that implies $I=\mathbb{F}$.
(2) Since $I \neq\{0\}$, there exists $n>0$ in I. Consider all the elements n in I that are strictly positive, meaning $n>0$. Every non-empty set of positive integers has a minimum element, so let n the minimum positive element in I. Given any other nonzero element $m \in I$, either m or $-m$ is positive, so we can assume without loss of generality that $m>0$. Notice that $(n, m)=u n+v m \in I$ for some $u, v \in \mathbb{Z}$. If $n \nmid m$, then $0<(n, m)<n$, but this contradicts our assumption on n. We conclude that $n \mid m$ and $m \in(n)$, so $I=(n)$.
B. The Quotient Ring R / I. Fix any ring R and any ideal $I \subseteq R$.
(1) Explain what needs to be checked in order to verify that the addition and multiplication defined above on the set R / I are well-defined. Now check it for at least one of the operations.
(2) Explain briefly why the ring axioms (for example, associativity) for each operation on R / I follow easily from those for R.
(3) What are the additive and multiplicative identity elements in R / I ?
(4) What is the additive inverse of $y+I$ in R / I ?
(5) Explain why R / I is commutative whenever R is commutative.
(6) Prove that the canonical map $R \rightarrow R / I$ sending $r \mapsto r+I$ is a surjective homomorphism. Find its kernel.
(7) Consider the ring $R=\mathbb{Z}$ and the ideal $I=(n)$. What is the quotient ring R / I ?

Solution.

(1) Check that given any $f, g, f^{\prime}, g^{\prime} \in R$, if $f \equiv f^{\prime}$ and $g \equiv g^{\prime}$, then $f+g \equiv f^{\prime}+g^{\prime}$ and $f g \equiv f^{\prime} g^{\prime}$.
(2) Whatever the statement, we can use the definitions of the operations in R / I to convert the statement we need to prove into a statement in R : for example, to prove associativity of the addition, we note that

$$
((f+I)+(g+I))+(h+I)=((f+g)+h)+I,
$$

use that the sum is associate in R, and then finally use the definition of addition in R / I again to rewrite this as $(f+I)+((g+I)+(h+I))$.
(3) $0+I$ and $1+I$.
(4) $-y+I$.
(5) The multiplication operation in R / I is induced by the multiplication in R. Given any $f+I, g+I \in R / I$,

$$
(f+I) \cdot(g+I)=f g+I=g f+I=(g+I) \cdot(f+I) .
$$

(6) It's clear this is a surjective map, so all we need to check is that it is indeed a homomorphism. Clearly, $1 \mapsto 1+I$. The remaining properties follow by definition of the operations on R :
$(f+I)+(g+I)=((f+g)+I)$ and $(f+I) \cdot(g+I)=((f \cdot g)+I)$.
The kernel of the canonical homomorphism is I.
(7) Our old friend \mathbb{Z}_{n}.
C. Let $R=\mathbb{Z}_{6}$. Consider the subset $I=\left\{[0]_{6},[2]_{6},[4]_{6}\right\}$.
(1) Prove that I is an ideal of \mathbb{Z}_{6}.
(2) List out all elements of \mathbb{Z}_{6} in the congruence classes of $[0]_{6},[2]_{6}$, and $[1]_{6}$.
(3) Write out the subset $[0]_{6}+I$ of \mathbb{Z}_{6} in set notation. Ditto for $[1]_{6}+I$.
(4) Remember that the elements of R / I are subsets of the ring R. The ring \mathbb{Z}_{6} / I has two elements, both are subsets of \mathbb{Z}_{6}. What are these two elements in this case? What is the standard "quotient ring" notation for these elements of \mathbb{Z}_{6} / I ? What is the simplest possible notation for these two elements of \mathbb{Z}_{6} / I, allowing "abuses" of notation?
(5) Prove that $\mathbb{Z}_{6} / I \cong \mathbb{Z}_{2}$ by describing an explicit isomorphism. Think about how the corresponding elements of \mathbb{Z}_{2} and \mathbb{Z}_{6} / I under the isomorphism are "the same" or different.

Solution.

(1) This is a non-empty subset of \mathbb{Z}_{6}. It's closed for additive inverses because $-[2]_{6}=$ $[4]_{6}$, closed for addition because $[2]+[2]=[4],[2]+[4]=[0]$ and $[4]+[4]=[2]$, and closed for multiplication by any elements because as a subset of \mathbb{Z}, the union of all these classes corresponds precisely to all the even integers.
(2) $[0]_{6}+I=[2]_{6}+I=\left\{[0]_{6},[2]_{6},[4]_{6}\right\}$ and $[1]_{6}+I=\left\{[1]_{6},[3]_{6},[5]_{6}\right\}$. There are only two elements in \mathbb{Z}_{6} / I.
(3) Same answer as the previous question.
(4) The two elements we already described. We could simplify our notation and writing them as just $0+I$ and $1+I$, or even just 0 and 1 .
(5) Check that the map $[0]_{6}+I \mapsto[0]_{2}$ and $[1]_{6}+I \mapsto[1]_{2}$ is a ring homomorphism. This is also easily a bijection.
D. Quotients of polynomial Rings.
(1) Let \mathbb{F} be a field, and $R=\mathbb{F}[x]$. Let $I=(f(x))=\{g(x) f(x) \mid g(x) \in R\}$ be an ideal. Show that every element $h(x)+I \in R / I$ contains exactly one polynomial $t(x)$ such that $t(x)=0$ or $\operatorname{deg}(t(x))<\operatorname{deg}(f(x))$.
(2) How many elements are in $\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)$?
(3) Write out addition and multiplication tables for the quotient ring in the previous part. Is it a domain? Is it a field?
(4) Prove, in general, that if \mathbb{F} is a field, $R=\mathbb{F}[x]$, and $f(x)$ is irreducible, then $R /(f(x))$ is a field.

Solution.

(1) Notice that there is only one such polynomial in I : 0 . Given two such polynomials $t(x), u(x), t(x)-u(x)$ is also such a polynomial. Therefore, if $t(x) \equiv u(x)$ modulo I, that means that $t(x)-u(x)=0$. This shows that each polynomial $t(x)$ such that $t(x)=0$ or $\operatorname{deg}(t(x))<\operatorname{deg}(f(x))$ determines a different class modulo I. Now it remains to check that these are all the equivalence classes. But given any polynomial $h(x)$, if $r(x)$ is the remainder when we divide $h(x)$ by $f(x)$, then $h(x) \equiv r(x)$ and $r(x)=0$ or $\operatorname{deg}(r(x))<\operatorname{deg}(f(x))$.
(2) There is a class for each polynomial of degree strictly less than 2 , and there are 4 such polynomials: $0,1, x, x+1$.
(3) A field, since $x^{2}+x+1$ is irreducible.

+	0	1	x	$x+1$
0	0	1	x	$x+1$
1	1	0	$x+1$	x
x	x	$x+1$	0	1
$x+1$	$x+1$	x	1	x

\cdot	0	1	x	$x+1$
0	0	0	0	0
1	0	1	x	$x+1$
x	0	x	$x+1$	1
$x+1$	0	$x+1$	1	x

(4) Following what we did for \mathbb{Z}, we can show that the greatest common divisor between two elements f and g in $\mathbb{F}[x]$ can be obtained from a factorization into irreducibles: if

$$
f=u f_{1} \cdots f_{n} \text { and } g=v g_{1} \cdots g_{m}
$$

for monic irreducible polynomials f_{j}, g_{i} and units u, v, then the greatest common divisor of f and g is simply the product of all the common irreducible factors, counting minimum common multiplicity. Consider any $g \in \mathbb{F}[x]$, and suppose that $g=u g_{1} \cdots g_{n}$ is a factorization into monic irreducibles with u a unit. If $g+(f) \neq 0+(f)$, then $f \nmid g$, and thus $f \nmid g_{i}$ for all i. Then the greatest common divisor of f and g is 1 , and $p f+q g=1$ for some polynomials p and q. Then $q+I$ is the multiplicative inverse of $g+I$ in R / I.
E. IdEALS IN QUOTIENT RINGS. The ideals in R / I are in one-to-one correspondence with the ideals in R that contain I.
(1) Suppose that $J \supseteq I$ is an ideal in R. Show the image of J by the canonical homomorphism $\pi: R \longrightarrow R / I$ is an ideal in R / I.
(2) Consider any ideal a in R / I. Show that the set

$$
J=\pi^{-1}(a)=\{r \in R: r+I \in a\}
$$

is an ideal in R that contains I.
(3) What are the ideals in \mathbb{Z}_{42} ? What ideals in \mathbb{Z} do they correspond to?

Solution.

(1) Since $0 \in J, 0+I \in \pi(J)$. Given any $r, s \in J$, and any $t \in R$,

$$
\pi(r)+\pi(s)=\pi(r+s) \in \pi(J),-\pi(r)=\pi(-r) \in \pi(J)
$$

and

$$
(t+R) \pi(a)=\pi(t) \pi(a)=\pi(t a) \in \pi(J)
$$

Notice that we used here the fact that π is surjective.
(2) Clearly, $0 \in J$. If $r, s \in J$ and $t \in R$, then
$(r+s)+I=(r+I)+(s+I) \in a,-r+I=-(r+I) \in a$, and $t s+I=(t+I)(s+I) \in a$, since a is an ideal, and thus $r+s, t s \in J$. Therefore, J is an ideal. Moreover, if $r \in I$, then $r+I=0+I \in a$, so $I \subseteq J$.
(3) Since $42=2 * 3 * 7$ and $(n) \supseteq(42)$ if and only if $n \mid 42$, there are three nontrivial ideals in $\mathbb{Z}_{42}:\left([2]_{42}\right),\left([3]_{42}\right)$, and $\left([7]_{42}\right)$.

