Math 412. Review questions

- Definition of ring
- What is an operation?
- What does it mean to be associative?
- What does it mean to be commutative?
- What does it mean to have an identity?
- What does it mean for an element to have an inverse?
- What does it mean for two operations to satisfy distributive laws?
- What is the definition of a ring? ${ }^{1}$
- What is the definition of a subring?
- How do you define subtraction in a ring?
- Can you use the axioms to prove that $(-a)(-b)=a b$, and other basic things?
- Examples/constructions of rings
- Which familiar sets of numbers are rings?
- Is \mathbb{Z}_{N} a ring? What are the operations?
- Why is $R \times S$ a ring if R, S are? What the the operations, and 0 and 1 ?
- How do you check if a subset of a ring is a subring?
- Do you know rings where the multiplication is not commutative?
- Are there infinite rings with finite subrings?
- Are there commutative rings with noncommutative subrings?
- Are there noncommutative rings with commutative subrings?
- Special types of rings/elements
- When does $0=1$ in a ring?
- What is a commutative ring?
- What is an (integral) domain?
- What is a field?
- Which of the last few notions imply each other? Why? What if the ring is finite?
- Can you cancel addition in a ring?
- Can you cancel multiplication by a nonzero element in a ring? If not, can you do it in one of the special types of rings above?
- What is a zerodivisor? What does it have to do with these special ring types?
- What is a unit? What does it have to do with these special ring types?
- What is a nilpotent?
- What is an idempotent?
- In what type of ring do you have all four operations,,$+- \times, \div$ (except dividing by zero)? How is division defined in such a ring?
- Homomorphisms
- What is a homomorphism?
- What is an isomorphism?
- Can you find homomorphisms that are injective but not surjective? Surjective but not injective? Neither?
- What is the kernel of a homomorphism?
- What is the image of a homomorphism?
- What special property does the kernel have?
- What special property does the image have?
- When is there a homomorphism $\mathbb{Z}_{N} \rightarrow \mathbb{Z}_{M}$?

[^0]- Given a ring R, what ring homomorphisms $\mathbb{Z} \longrightarrow R$ are there?
- Ideals
- What is an ideal?
- How do you check a subset of a ring is an ideal?
- Are ideals subrings? Are subrings ideals?
- What two ideals does every ring have?
- How is checking a subset is an ideal different in a commutative ring vs a noncommutative one?
- What is the ideal generated by a_{1}, \ldots, a_{t} in a commutative ring?
- What are generators of an ideal?
- What is congruence modulo an ideal?
- Must every ideal I in a ring R be the kernel of some ring homomorphism $R \longrightarrow S$?
- \mathbb{Z}
- What is the division algorithm in \mathbb{Z} ?
- What is the Euclidean algorithm in \mathbb{Z} ?
- What is the fundamental theorem of arithmetic in \mathbb{Z} ?
- What are the units in \mathbb{Z} ?
- What are the zerodivisors in \mathbb{Z} ?
- What is the GCD of two elements in \mathbb{Z} ?
- What is a prime in \mathbb{Z} ?
- What special property do primes have for dividing other numbers?
- Is the GCD of two integers a linear combination? How do you find it as such?
- What are the ideals in \mathbb{Z} ?
- What rings can we obtain as quotients of \mathbb{Z} ?
- \mathbb{Z}_{N}
- What is \mathbb{Z}_{N} ? What are its elements?
- What are the units in \mathbb{Z}_{N} ?
- What are the zerodivisors in \mathbb{Z}_{N} ?
- When is \mathbb{Z}_{N} a field? A domain?
- For which N does $a x=b$ always have a solution in \mathbb{Z}_{N}, if $a \neq 0$?
- How do you find inverses in \mathbb{Z}_{N} ?
- How do you solve $a x=b$ in \mathbb{Z}_{N}, when it does have a solution?
- What are the ideals in \mathbb{Z}_{N} ?
- What does the Chinese remainder theorem say?
- $\mathbb{F}[x]$
- What is the division algorithm in $\mathbb{F}[x]$?
- What is the fundamental theorem of arithmetic in $\mathbb{F}[x]$?
- What are the units in $\mathbb{F}[x]$?
- What are the zerodivisors in $\mathbb{F}[x]$?
- What is the GCD of two elements in $\mathbb{F}[x]$?
- What is an irreducible element in $\mathbb{F}[x]$?
- What special property do irreducible element for dividing other numbers?
- Is the GCD of two polynomials in $\mathbb{F}[x]$ a linear combination? How do you find it as such?
- What are the ideals in $\mathbb{F}[x]$?
- $R[x]$ for a general ring R
- When is $R[x]$ a domain, if R is commutative?
- If R is a domain, what are the units in $R[x]$?
- Is every ideal of $R[x]$ generated by one element, in general?
- Is there a division algorithm for $R[x]$ in general?
- How is $\operatorname{deg}(f g)$ related to $\operatorname{deg}(f)$ and $\operatorname{deg}(g)$?
- What if R is a domain?
- Quotient rings
- What is a quotient ring?
- What are the elements in R / I ?
- What are the operations in R / I ?
- What does the first isomorphism theorem say?
- $\mathbb{F}[x] /(f)$, for \mathbb{F} a field and $f \in \mathbb{F}[x]$
- What is $\mathbb{F}[x] /(f)$? What are its elements?
- What are the units in $\mathbb{F}[x] /(f)$?
- What are the zerodivisors in $\mathbb{F}[x] /(f)$?
- When is $\mathbb{F}[x] /(f)$ a field? A domain?
- For which f does $a x=b$ always have a solution in $\mathbb{F}[x] /(f)$, if $a \neq 0$?
- How do you find inverses in $\mathbb{F}[x] /(f)$?
- How do you solve $a x=b$ in $\mathbb{F}[x] /(f)$, when it does have a solution?
- What are the ideals in $\mathbb{F}[x] /(f)$?

[^0]: ${ }^{1}$ A ring always has a multiplicative identity in this class.

