Math 412. Final Exam review questions

Groups

- Definition of groups
- What is a group?
- How many identity elements are there in a group?
- How may inverses are in a group?
- When does $g x=h$ have a solution in a group? How many solutions?
- What is a subgroup of a group?
- What two "trivial" subgroups does every group have?
- Is the empty set a subgroup?
- What is an abelian group?
- What is the order of a group?
- What is the order of an element of a group?
- What is the order of a subgroup?
- Examples of groups
- If R is a ring, R with which operation is a group?
- If R is a ring, what subset of R is a group under \times ?
- What is the group \mathcal{S}_{n} ? What is its order?
- What is the group \mathcal{A}_{n} ? What is its order?
- If X is a set, why is $\operatorname{Bij}(X)$, the set of bijections of X, a group?
- What is the group D_{n} ? What is its order?
- What is the group of rotational symmetries of a cube? What is its order?
- If \mathbb{F} is a field, what is $\mathrm{GL}_{n}(\mathbb{F})$? What is the order of $\mathrm{GL}_{2}(\mathbb{F})$?
- What is the group $\mathrm{SL}_{n}(\mathbb{F})$?
- What is the group \mathbb{Z}_{n}^{\times}?
- Is $D_{n} \cong S_{n}$?
- Is $\mathbb{Z}_{n} \times \mathbb{Z}_{m} \cong \mathbb{Z}_{m n}$?
- Cyclic groups and generators
- What is a cyclic group?
- How many cyclic groups are there of order n, up to isomorphism?
- What is the cyclic subgroup $\langle g\rangle$ generated by an element g in G ?
- What is the order of $\langle g\rangle$?
- What are the orders of elements in a cyclic group of order n ?
- What are the subgroups of a cyclic group of order n ?
- What is the subgroup $\left\langle g_{1}, \ldots, g_{t}\right\rangle$ generated by elements $g_{1}, \ldots, g_{t} \in G$?
- How many elements are needed to generate \mathbb{Z}_{n} ?
- How many elements are needed to generate D_{n} ?
- How many elements are needed to generate \mathcal{S}_{n} ?
- How many elements are needed to generate \mathbb{Z}_{p}^{\times}?
- Homomorphisms
- What is a group homomorphism?
- What is the kernel of the group homomorphism?
- What special type of subset is the kernel of a homomorphism?
- What special type of subset is the image of a homomorphism?
- If ϕ is a homomorphism, what is $\phi\left(e_{G}\right)$?
- If ϕ is a homomorphism, what is $\phi\left(g^{-1}\right)$?
- What is an isomorphism?
- What does it mean for two groups G, H to be isomorphic?
- If G and H are isomorphic, what can you say about their orders?
- If G and H are isomorphic, what can you say about the orders of their elements?
- Why is $\mathbb{Z}_{p q} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q}$ when p and q are distinct primes?
- Why is $\mathbb{Z}_{p q}^{\times} \cong \mathbb{Z}_{p}^{\times} \times \mathbb{Z}_{q}^{\times}$when p and q are distinct primes?
- Group actions
- What is a group action?
- What is the orbit of an element in a set X with an action of a group G on X ?
- What is the stabilizer of an element in a set X with an action of a group G on X ?
- How are the size of an orbit and the size of a stabilizer related?
- How does the size of an orbit in a group action on X compare to the size of X ?
- How does the size of an orbit in a group action of G on X compare to the order of G ?
- How do orbits of the group action relate to each other?
- When is a group action faithful?
- If G acts on X, then there is an associated homomorphism from G to what group?
- What are two examples of sets that \mathcal{S}_{n} acts on?
- What are two examples of sets that D_{n} acts on?
- The symmetric group
- What is a permutation?
- What is a t-cycle?
- What are disjoint cycles?
- What is permutation stack notation?
- How do you convert an element from stack notation to disjoint cycle notation?
- How do you rewrite a product of cycles as a product of disjoint cycles?
- How do you find the order of an element in \mathcal{S}_{n} ?
- What is an even permutation?
- What is an odd permutation?
- What is the sign homomorphism?
- Cosets and Lagrange's Theorem
- What is a right coset of H in G ?
- What is a left coset of H in G ?
- What is the index of H in G ?
- State Lagrange's Theorem in terms of the order of a group, order of a subgroup, and index.
- What is the relationship between the order of a subgroup and the order of the group?
- What is the relationship between the order of an element and the order of the group?
- What is $\left[a^{p-1}\right]_{p}$ if p is prime?
- What is $\left[a^{n}\right]_{p q}$ if p, q are prime and $n \equiv 1 \bmod (p-1)(q-1)$?
- Normal subgroups
- What is a normal subgroup, in terms of left and right cosets?
- What is a normal subgroup, in terms of $g \mathrm{Ng}^{-1}$?
- When is a subgroup normal, in terms of conjugacy classes?
- Associated to every homomorphism is what normal subgroup?
- What is an example of a normal subgroup of D_{n} ?
- What is an example of a normal subgroup of \mathcal{S}_{n} ?
- A normal subgroup is always the kernel of which group homomorphism?

- Quotient groups

- When does a subgroup define a quotient group?
- What are the elements of a quotient group?
- How do you tell if two elements of a quotient group are the same?
- What is the operation on a quotient group?
- Why is the property that N is normal important to define a quotient group?
- How is the order of a quotient group related to the order of the group?
- What is a homomorphism from G to G / N ?
- What are the quotient groups of a simple group?
- Is a quotient of a cyclic group cyclic?
- Is a quotient of an abelian group abelian?
- Is a quotient of an infinite group infinite?
- What does the first isomorphism theorem say?
- Given a homomorphism, what quotient of the source is isomorphic to the image?
- How does the cardinality of the image of a homomorphism relate to the order of the source?
- Simple groups
- What is a simple group?
- What abelian groups are simple?
- For what values of n is there a simple group of order n ?

RINGS

- Definition of ring
- What is an operation?
- What does it mean to be associative?
- What does it mean to be commutative?
- What does it mean to have an identity?
- What does it mean for an element to have an inverse?
- What does it mean for two operations to satisfy distributive laws?
- What is the definition of a ring? ${ }^{1}$
- What is the definition of a subring?
- How do you define subtraction in a ring?
- Can you use the axioms to prove that $(-a)(-b)=a b$, and other basic things?
- Examples/constructions of rings
- Which familiar sets of numbers are rings?
- Is \mathbb{Z}_{N} a ring? What are the operations?
- Why is $R \times S$ a ring if R, S are? What the the operations, and 0 and 1 ?
- How do you check if a subset of a ring is a subring?
- Do you know rings where the multiplication is not commutative?
- Are there infinite rings with finite subrings?
- Are there commutative rings with noncommutative subrings?
- Are there noncommutative rings with commutative subrings?
- Special types of rings/elements
- When does $0=1$ in a ring?
- What is a commutative ring?
- What is an (integral) domain?
- What is a field?

[^0]- Which of the last few notions imply each other? Why? What if the ring is finite?
- Can you cancel addition in a ring?
- Can you cancel multiplication by a nonzero element in a ring? If not, can you do it in one of the special types of rings above?
- What is a zerodivisor? What does it have to do with these special ring types?
- What is a unit? What does it have to do with these special ring types?
- What is a nilpotent?
- What is an idempotent?
- In what type of ring do you have all four operations,,$+- \times, \div$ (except dividing by zero)? How is division defined in such a ring?
- Homomorphisms
- What is a homomorphism?
- What is an isomorphism?
- Can you find homomorphisms that are injective but not surjective? Surjective but not injective? Neither?
- What is the kernel of a homomorphism?
- What is the image of a homomorphism?
- What special property does the kernel have?
- What special property does the image have?
- When is there a homomorphism $\mathbb{Z}_{N} \rightarrow \mathbb{Z}_{M}$?
- Given a ring R, what ring homomorphisms $\mathbb{Z} \longrightarrow R$ are there ?
- Ideals
- What is an ideal?
- How do you check a subset of a ring is an ideal?
- Are ideals subrings? Are subrings ideals?
- What two ideals does every ring have?
- How is checking a subset is an ideal different in a commutative ring vs a noncommutative one?
- What is the ideal generated by a_{1}, \ldots, a_{t} in a commutative ring?
- What are generators of an ideal?
- What is congruence modulo an ideal?
- Must every ideal I in a ring R be the kernel of some ring homomorphism $R \longrightarrow S$?
- \mathbb{Z}
- What is the division algorithm in \mathbb{Z} ?
- What is the Euclidean algorithm in \mathbb{Z} ?
- What is the fundamental theorem of arithmetic in \mathbb{Z} ?
- What are the units in \mathbb{Z} ?
- What are the zerodivisors in \mathbb{Z} ?
- What is the GCD of two elements in \mathbb{Z} ?
- What is a prime in \mathbb{Z} ?
- What special property do primes have for dividing other numbers?
- Is the GCD of two integers a linear combination? How do you find it as such?
- What are the ideals in \mathbb{Z} ?
- What rings can we obtain as quotients of \mathbb{Z} ?
- \mathbb{Z}_{N}
- What is \mathbb{Z}_{N} ? What are its elements?
- What are the units in \mathbb{Z}_{N} ?
- What are the zerodivisors in \mathbb{Z}_{N} ?
- When is \mathbb{Z}_{N} a field? A domain?
- For which N does $a x=b$ always have a solution in \mathbb{Z}_{N}, if $a \neq 0$?
- How do you find inverses in \mathbb{Z}_{N} ?
- How do you solve $a x=b$ in \mathbb{Z}_{N}, when it does have a solution?
- What are the ideals in \mathbb{Z}_{N} ?
- What does the Chinese remainder theorem say?
- $\mathbb{F}[x]$
- What is the division algorithm in $\mathbb{F}[x]$?
- What is the fundamental theorem of arithmetic in $\mathbb{F}[x]$?
- What are the units in $\mathbb{F}[x]$?
- What are the zerodivisors in $\mathbb{F}[x]$?
- What is the GCD of two elements in $\mathbb{F}[x]$?
- What is an irreducible element in $\mathbb{F}[x]$?
- What special property do irreducible element for dividing other numbers?
- Is the GCD of two polynomials in $\mathbb{F}[x]$ a linear combination? How do you find it as such?
- What are the ideals in $\mathbb{F}[x]$?
- $R[x]$ for a general ring R
- When is $R[x]$ a domain, if R is commutative?
- If R is a domain, what are the units in $R[x]$?
- Is every ideal of $R[x]$ generated by one element, in general?
- Is there a division algorithm for $R[x]$ in general?
- How is $\operatorname{deg}(f g)$ related to $\operatorname{deg}(f)$ and $\operatorname{deg}(g)$?
- What if R is a domain?
- Quotient rings
- What is a quotient ring?
- What are the elements in R / I ?
- What are the operations in R / I ?
- What does the first isomorphism theorem say?
- $\mathbb{F}[x] /(f)$, for \mathbb{F} a field and $f \in \mathbb{F}[x]$
- What is $\mathbb{F}[x] /(f)$? What are its elements?
- What are the units in $\mathbb{F}[x] /(f)$?
- What are the zerodivisors in $\mathbb{F}[x] /(f)$?
- When is $\mathbb{F}[x] /(f)$ a field? A domain?
- For which f does $a x=b$ always have a solution in $\mathbb{F}[x] /(f)$, if $a \neq 0$?
- How do you find inverses in $\mathbb{F}[x] /(f)$?
- How do you solve $a x=b$ in $\mathbb{F}[x] /(f)$, when it does have a solution?
- What are the ideals in $\mathbb{F}[x] /(f)$?

[^0]: ${ }^{1}$ A ring always has a multiplicative identity in this class.

