Math 412. Adventure sheet on $\S 2.2$ and $\S 2.3$: Arithmetic in \mathbb{Z}_{N}

DEFINITION: For a positive integer N, \mathbb{Z}_{N} is the set of congruence classes of integers modulo N.
A. RECAP FROM LAST TIME:
(1) What are the elements of \mathbb{Z}_{3} ? What are the elements of the elements of \mathbb{Z}_{3} ? ${ }^{1}$
(2) How many elements are in \mathbb{Z}_{N} in general? Why?
(3) Given two elements $[x]$ and $[y]$ in \mathbb{Z}_{N}, we came up for a rule for adding $[x]$ and $[y]$ to get another element in \mathbb{Z}_{N}. In the book this was denoted $[x] \oplus[y]$ in $\S 2.2$ and then denoted $[x]+[y]$ in $\S 2.3$.
(4) Compute $[120]+[13]$ and $[-19]+[23]$ in \mathbb{Z}_{6}.
(5) What is the general rule for $[x]+[y]$ in \mathbb{Z}_{N} ? Why was this rule "easier said than done"? That is, what was crucial to check when posing this definition?
(6) Given two elements $[x]$ and $[y]$ in \mathbb{Z}_{N}, we came up for a rule for multiplying $[x]$ and $[y]$ to get another element in \mathbb{Z}_{N}. In the book this was denoted $[x] \odot[y]$ in $\S 2.2$ and then denoted $[x] \cdot[y]$ or $[x][y]$ in $\S 2.3$.
(7) Compute $[120] \cdot[13]$ and $[-19] \cdot[23]$ in \mathbb{Z}_{6}.
(8) What is the general rule for $[x] \cdot[y]$ in \mathbb{Z}_{N} ? Why was this rule "easier said than done"? That is, what was crucial to check when posing this definition?
(9) Come up with a general rule for $[x]-[y]$ in \mathbb{Z}_{N}. Why is it well-defined?
B. BASIC PROPERTIES OF ADDITION AND MULTIPLICATION IN \mathbb{Z}_{N} : Addition and multiplication in \mathbb{Z}_{N} behave a lot like they do in \mathbb{Z}.
(1) Show that $[a]_{N} \cdot[b]_{N}=[b]_{N} \cdot[a]_{N}$ for every $a, b \in \mathbb{Z}$. In other words, prove that multiplication is commutative.
(2) Show that $[a]_{N} \cdot\left([b]_{N}+[c]_{N}\right)=[a]_{N} \cdot[b]_{N}+[a]_{N} \cdot[c]_{N}$ for every $a, b, c \in \mathbb{Z}$.
(3) Can you guess what some of the other properties might be? We will prove them next time.
C. Solving equations in \mathbb{Z}_{N} :
(1) Rewrite the equation $[a] x=[b]$ in \mathbb{Z}_{N} as a congruence (\equiv) equation involving integers. ${ }^{2}$ What is the relationship between a solution of the congruence equation and the original equation in \mathbb{Z}_{N} ?
(2) Rewrite the equation $[a] x=[b]$ in \mathbb{Z}_{N} as a statement involving division (\mid) of integers. What is the relationship between a solution of the division statement and the original equation in \mathbb{Z}_{N} ?
(3) Show that if $(a, N)=1$, then $[a] x=[1]$ has a solution in \mathbb{Z}_{N}.
(4) Based on the previous part, what technique would you use to solve $[a] x=[1]$?
(5) For more complicated equations, things are a bit harder. Solve the equation $[2] x^{2}-[5]=[0]$ in \mathbb{Z}_{9} by plugging in values.
D. SOLVING $[a] x=[b]$ IN \mathbb{Z}_{p} WHEN p IS PRIME:
(1) Prove that if p is prime and $[a] \neq[0]$, then $[a] x=[1]$ always has a solution in \mathbb{Z}_{p}.
(2) Prove that if p is prime and $[a] \neq[0]$, then $[a] x=[0]$ implies $x=[0]$ in \mathbb{Z}_{p}.
(3) Prove that if p is prime and $[a] \neq[0]$, then $[a] x=[1]$ always has a unique solution in \mathbb{Z}_{p}.
(4) Prove that if p is prime and $[a] \neq[0]$, then $[a] x=[b]$ always has a unique solution in \mathbb{Z}_{p}.
E. Solving $[a] x=[b]$ In \mathbb{Z}_{N} WHEN N IS NOT PRIME:
(1) Solve $[9] x=[3],[3] x=[1]$, and $[9] x=[4]$ in \mathbb{Z}_{12}.
(2) Let a and n be two integers, not both zero. Prove that $\{r a+s n \mid r, s \in \mathbb{Z}\}=\{k(a, n) \mid k \in \mathbb{Z}\}$.
(3) When does $[a] x=[b]$ have a solution in \mathbb{Z}_{N} ? When does it have multiple solutions?

[^0]
[^0]: ${ }^{1}$ This is not a riddle!
 ${ }^{2}$ where x is an unknown element of \mathbb{Z}_{N} !

