
Math 412. Adventure sheet on Normal Subgroups

DEFINITION: A subgroup N of a group G is normal if for all g ∈ G, the left and right N -cosets gN
and Ng are the same subsets of G.

PROPOSITION: For any subgroup H of a group G, we have |H| = |gH| = |Hg| for all g ∈ G.

THEOREM 8.11: A subgroup N of a group G is normal if and only if for all g ∈ G,

gNg−1 ⊆ N.

Here, the set gNg−1 := {gng−1 | n ∈ N}.
NOTATION: If H ⊆ G is any subgroup, then G/H denotes the set of left cosets of H in G. It
elements are sets denoted gH where g ∈ G. Recall that the cardinality of G/H is called the index of
H in G. We sometimes write H E G to indicate that H is a normal subgroup of G.

A. WARMUP

(1) Let 2Z be the subgroup of even integers in Z. Fix any n ∈ Z. Describe the left coset n+2Z (your
answer will depend on the parity of n). Describe the right coset 2Z+n. Is 2Z a normal subgroup
of Z? What is its index? Describe the partition of Z into left (respectively, right) 2Z-cosets.

(2) Let K = 〈(2 3)〉 ⊂ S3. Find the right coset K(1 2). Find the left coset (1 2)K. Is K a normal
subgroup of S3?

(3) Let N = 〈(1 2 3)〉 ⊂ S3. Find the right coset N(1 2). Find the left coset (1 2)N . Describe the
partition of S3 into left N -cosets. Compare to the partition into right N -cosets. Is gN = Ng for
all g ∈ S3? Is N a normal subgroup of S3?

Solution.
(1) The left coset n+ 2Z is the set of odd numbers if n is odd and the set of even numbers if n is

even. Ditto for the right coset 2Z+ n. The subgroup 2Z is normal because n+ 2Z = 2Z+ n
for all n. Index is two.

(2) Right coset K(1 2) is {(12), (132)}. Left coset (1 2)K is {(12), (123)}. Since K(1 2) 6=
(1 2)K, K is not normal.

(3) The right coset is N(1 2) = {(12), (23), (13)}. The left coset is (12)N = {(12), (23), (13)}.
We see that (12)N = N(12). To find the partition into left cosets, we compute all left cosets.
The only other coset is eN = {e, (123), (132)}. We know this because all left cosets have
the same cardinality, so since the coset (12)N has three element, so do all the others. But the
cosets are disjoint! So there can be only one more coset, and it is eN . The partition into right
cosets is the same! We know that eN = Ne, so one left/right coset is the set {e, (123), (132)}.
The other left/right coset is the complement: N(12) = (12)N = {(12), (23), (13)}, which
we can also write N(13) = (13)N = N(23) = (33)N . So yes, gN = Ng for all g. So N is
normal.

B. EASY PROOFS

(1) Prove that if G is abelian, then every subgroup K is normal.
(2) Prove that for any subgroup K, and any g ∈ K, we have gK = Kg.
(3) Find an example of subgroup H of G which is normal but does not satisfy hg = gh for all h ∈ H

and all g ∈ G.
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Solution.
(1) Take arbitrary g ∈ G. If G is abelian, we know gK = {gk | k ∈ K} = {kg|k ∈ K} = Kg.

So K is normal.
(2) If g ∈ K, then gk ∈ K for all k ∈ K, so gK ⊆ K. But also every k ∈ K can be written

k = g(g−1k) ∈ gK, since g−1k ∈ K implies g−1k ∈ K. So K = gK. A similar argument
shows that K = Kg, so Kg = gK for all g ∈ K.

(3) We saw an example already in A3.

C. Let G be the group (S5, ◦). Use Theorem 8.11 to determine which of the following are normal
subgroups.

(1) The trivial subgroup e.
(2) The whole group S5.
(3) The subgroup A5 of even permutations.
(4) The subgroup H generated by (1 2 3 ).
(5) The subgroup S4 of permutations that fix 5.
(6) Use Lagrange’s Theorem to compute the index of each subgroup in (1)–(5).

Solution.
(1) The trivial subgroup is normal.
(2) The whole group is a normal subgroup.
(3) The group An is normal, because given any g ∈ Sn, and any h ∈ An, we need to check that

ghg−1 ∈ An. But h is a composition of an even number of transpositions, say 2k transposi-
tions, and if g is a composition of d transpositions, then so is g−1. So ghg−1 is a composition
of d+ 2k + d = 2(d+ k) transpositions, and hence is in An.

(4) The group H = {e, (123), (132)} is not normal if n > 4: if we conjugate by (14), we get
(14)(123)(14) = (423) which is not in H .

(5) The subgroup Sn−1 of permutations that fix n is not normal: the element (12) is in Sn−1 but
its conjugate by (1n) is (2n) which does not fix n.

(6) Lagrange’s theorem tells us that [Sn : An] = 2 (we have even and odd permutations for the
cosets) [Sn : H] = n!/3, and [Sn : Sn−1] = n!/(n− 1)! = n.

D. Let G
φ→ H be a group homomorphism.

(1) Prove that the kernel of φ is a normal subgroup of G.
(2) Prove that the group SLn(Q) of determinant one matrices with entries in Q is a normal subgroup

of GLn(Q).

Solution.
(1) Take k ∈ ker(φ) and g ∈ G arbitrary. We need to show that gkg−1 ∈ ker(φ). Apply φ to

get φ(g)φ(k)φ(g−1). Since k ∈ ker(φ), this is φ(g)eφ(g−1) = φ(gg−1) = φ(eG) = eH . So
gkg−1 ∈ ker(φ).

(2) We only need to note that this is the kernel of the group homomorphism det.



E. CONJUGATION. Let G be a group, and g, h ∈ G. We call the element ghg−1 is the conjugate
of h by g. Let cg : G → G be the function given by the rule cg(h) = ghg−1. We call this function
conjugation by g.

(1) Show that, if h1, h2 ∈ G, then cg(h1)cg(h2) = cg(h1h2). Thus, cg is a group homomorphism from
G to itself.

(2) Show that cg−1 ◦ cg = cg ◦ cg−1 is the identity on G. Conclude that cg is an automorphism of G:
a group isomorphism from G to itself.

(3) Let G = Sn, and h = ( a b ) be a 2-cycle. What is cg(h)?1 If instead h = ( a1 a2 · · · at ) is a
t-cycle, what do you think cg(h) is? If you know how to write h as a product of disjoint cycles,
how can you write cg(h) as a product of disjoint cycles?

(4) Interpret the last problem as follows: cg(h) is “the same permutation as h up to relabeling the
elements {1, . . . , n} by g.”

(5) Now let G = GLn(R). If g = S and h = A are matrices in G, explain what is the geometric
meaning of cg(h). Compare with the previous part.

Solution.
(1) cg(h1)cg(h2) = (gh1g

−1)(gh2g
−1) = gh1(g

−1g)h1g
−1 = gh1h2g

−1 = cg(h1h2).
(2) cg−1 ◦ cg)(h) = cg−1(cg(h)) = cg−1(ghg−1) = g−1(ghg−1)g = (g−1g)h(g−1g) = h.

So cg−1 ◦ cg is the identity map. Applying the same argument with g−1 in place of g shows
the other composition is the identity.

(3) In the homework, we proved that g( a b )g−1 = ( g(a) g(b) ). This generalizes to
g( a1 a2 · · · at )g−1 = ( g(a1) g(a2) · · · g(at) ). To check the equality, we deal with differ-
ent cases. If i = g(aj) for some j < t, then

(g( a1 a2 · · · at )g−1)(i) = (g( a1 a2 · · · at )g−1)g(aj) = (g( a1 a2 · · · at ))(aj) = g(aj+1).

If i = g(at), then

(g( a1 a2 · · · at )g−1)(i) = (g( a1 a2 · · · at )g−1)g(at) = (g( a1 a2 · · · at ))(at) = g(a1).

If i 6= g(aj) for any j = 1, . . . , t, then g−1(i) 6= aj for any j = 1, . . . , t, so

(g( a1 a2 · · · at )g−1)(i) = (g( a1 a2 · · · at )g−1(i) = g(g−1(i)) = i.

Thus, this permutation agrees with the t-cycle ( g(a1) g(a2) · · · g(at) ).
Finally, since conjugation respects products, given a product of cycles, we can use the last

rule to write the conjugate as a product of cycles (of the same lengths).
(4) OK!
(5) We called conjugtion similarity in linear algebra. It corresponds to change of basis. The ma-

trix cg(h) gives the same linear transformation as h in the basis corresponding to the columns
of g.

F. THE PROOF OF THEOREM 8.11. Let G be a group and H some subgroup. Prove that the following
are equivalent by showing (1) implies (2) implies (3) implies (4) implies (5) implies (1).

(1) H is normal.
(2) gHg−1 ⊆ H for all g ∈ G.
(3) g−1Hg ⊆ H for all g ∈ G.
(4) g−1Hg = H for all g ∈ G.
(5) gHg−1 = H for all g ∈ G.

1Hint: You did this on the homework, so just remember it instead of reproving it.



Solution. (1) ⇒ (2): If H is normal, then for every h ∈ H and every g ∈ G, gh ∈ Hg, so there
exists h′ ∈ H such that gh = h′g, and ghg−1 = h′ ∈ H .
(2)⇒ (3): Since the statement holds for any g ∈ G, it holds for g−1.
(2)⇔ (3)⇔ (4): Our proof that (2)⇒ (3) also gives (3)⇒ (2), which together make (4).
(4)⇔ (5): Replace g by g−1, which we can do since the statements are written over all g.
(5)⇔ (1): given any g ∈ G and any h ∈ H , ghg−1 = h′ ∈ H , so gh = h′g−1 ∈ Hg; this shows that
gH ⊆ Hg for all g ∈ G. Similarly we can show that Hg ⊆ gH for all g ∈ G, and thus H is normal.

G. Suppose that H is an index two subgroup of G.
(1) Prove that the partition of G up into left cosets is the disjoint union of H and GrH .
(2) Prove that the partition of G up into right cosets is the disjoint union of H and GrH .
(3) Prove that for every g ∈ G, gH = Hg.
(4) Prove the THEOREM: Every subgroup of index two in G is normal.

Solution.
(1) If the index is two, there are only two left cosets. Since one is H = eH , the other is its

complement GrH (as they are disjoint).
(2) Ditto.
(3) Consider any g ∈ G; either g ∈ H or g /∈ H . If g ∈ H , then gH = H = Hg, since h

is closed under multiplication and gH . If g /∈ H , gH 6= H , so gH = G r H . Similarly,
Hg = GrH , so gH = Hg.

(4) We just saw that gH = Hg for all g ∈ G. By definition, H is normal.

H. OPERATIONS ON COSETS: Let (G, ◦) be a group and let N ⊆ G be a normal subgroup.
(1) Explain why Ng = gN . Explain why both cosets contain g.
(2) Take arbitrary ng ∈ Ng. Prove that there exists n′ ∈ N such that ng = gn′.
(3) Take any x ∈ g1N and any y ∈ g2N . Prove that xy ∈ g1g2N .
(4) Define a binary operation ? on the set G/N of left N -cosets as follows:

G/N ×G/N → G/N g1N ? g2N = (g1 ◦ g2)N.
Think through the meaning: the elements of G/N are sets and the operation ? combines two of
these sets into a third set: how? Explain why the binary operation ? is well-defined. Where are
you using normality of N?

(5) Prove that the operation ? in (4) is associative.
(6) Prove that N is an identity for the operation ? in (4).
(7) Prove that every coset gN ∈ G/N has an inverse under the operation ? in (4).
(8) Conclude that (G/N, ?) is a group.

Solution. This is 8.3 in the book. More next time. Please read 8.3 carefully, and then try this exercise
on your own!


