DEfinition: A subgroup N of a group G is normal if for all $g \in G$, the left and right N-cosets $g N$ and $N g$ are the same subsets of G.
Proposition: For any subgroup H of a group G, we have $|H|=|g H|=|H g|$ for all $g \in G$.
THEOREM 8.11: A subgroup N of a group G is normal if and only if for all $g \in G$,

$$
g N g^{-1} \subseteq N
$$

Here, the set $g N g^{-1}:=\left\{g n g^{-1} \mid n \in N\right\}$.
Notation: If $H \subseteq G$ is any subgroup, then G / H denotes the set of left cosets of H in G. It elements are sets denoted $g H$ where $g \in G$. Recall that the cardinality of G / H is called the index of H in G. We sometimes write $H \unlhd G$ to indicate that H is a normal subgroup of G.

A. Warmup

(1) Let $2 \mathbb{Z}$ be the subgroup of even integers in \mathbb{Z}. Fix any $n \in \mathbb{Z}$. Describe the left coset $n+2 \mathbb{Z}$ (your answer will depend on the parity of n). Describe the right coset $2 \mathbb{Z}+n$. Is $2 \mathbb{Z}$ a normal subgroup of \mathbb{Z} ? What is its index? Describe the partition of \mathbb{Z} into left (respectively, right) 2Z-cosets.
(2) Let $K=\langle(23)\rangle \subset \mathcal{S}_{3}$. Find the right coset $K(12)$. Find the left coset (12) K. Is K a normal subgroup of \mathcal{S}_{3} ?
(3) Let $N=\langle(123)\rangle \subset S_{3}$. Find the right coset $N(12)$. Find the left coset (12)N. Describe the partition of \mathcal{S}_{3} into left N-cosets. Compare to the partition into right N-cosets. Is $g N=N g$ for all $g \in \mathcal{S}_{3}$? Is N a normal subgroup of \mathcal{S}_{3} ?

Solution.

(1) The left coset $n+2 \mathbb{Z}$ is the set of odd numbers if n is odd and the set of even numbers if n is even. Ditto for the right coset $2 \mathbb{Z}+n$. The subgroup $2 \mathbb{Z}$ is normal because $n+2 \mathbb{Z}=2 \mathbb{Z}+n$ for all n. Index is two.
(2) Right coset $K(12)$ is $\{(12),(132)\}$. Left coset (12) K is $\{(12),(123)\}$. Since $K(12) \neq$ (12) K, K is not normal.
(3) The right coset is $N(12)=\{(12),(23),(13)\}$. The left coset is (12) $N=\{(12),(23),(13)\}$. We see that (12)N=N(12). To find the partition into left cosets, we compute all left cosets. The only other coset is $e N=\{e,(123),(132)\}$. We know this because all left cosets have the same cardinality, so since the coset (12) N has three element, so do all the others. But the cosets are disjoint! So there can be only one more coset, and it is $e N$. The partition into right cosets is the same! We know that $e N=N e$, so one left/right coset is the set $\{e,(123),(132)\}$. The other left/right coset is the complement: $N(12)=(12) N=\{(12),(23),(13)\}$, which we can also write $N(13)=(13) N=N(23)=(33) N$. So yes, $g N=N g$ for all g. So N is normal.

B. Easy Proofs

(1) Prove that if G is abelian, then every subgroup K is normal.
(2) Prove that for any subgroup K, and any $g \in K$, we have $g K=K g$.
(3) Find an example of subgroup H of G which is normal but does not satisfy $h g=g h$ for all $h \in H$ and all $g \in G$.

Solution.

(1) Take arbitrary $g \in G$. If G is abelian, we know $g K=\{g k \mid k \in K\}=\{k g \mid k \in K\}=K g$. So K is normal.
(2) If $g \in K$, then $g k \in K$ for all $k \in K$, so $g K \subseteq K$. But also every $k \in K$ can be written $k=g\left(g^{-1} k\right) \in g K$, since $g^{-1} k \in K$ implies $g^{-1} k \in K$. So $K=g K$. A similar argument shows that $K=K g$, so $K g=g K$ for all $g \in K$.
(3) We saw an example already in A3.
C. Let G be the group $\left(S_{5}, \circ\right)$. Use Theorem 8.11 to determine which of the following are normal subgroups.
(1) The trivial subgroup e.
(2) The whole group S_{5}.
(3) The subgroup A_{5} of even permutations.
(4) The subgroup H generated by (123).
(5) The subgroup S_{4} of permutations that fix 5 .
(6) Use Lagrange's Theorem to compute the index of each subgroup in (1)-(5).

Solution.

(1) The trivial subgroup is normal.
(2) The whole group is a normal subgroup.
(3) The group A_{n} is normal, because given any $g \in S_{n}$, and any $h \in A_{n}$, we need to check that $g h g^{-1} \in A_{n}$. But h is a composition of an even number of transpositions, say $2 k$ transpositions, and if g is a composition of d transpositions, then so is g^{-1}. So $g h g^{-1}$ is a composition of $d+2 k+d=2(d+k)$ transpositions, and hence is in A_{n}.
(4) The group $H=\{e,(123),(132)\}$ is not normal if $n \geqslant 4$: if we conjugate by (14), we get $(14)(123)(14)=(423)$ which is not in H.
(5) The subgroup S_{n-1} of permutations that fix n is not normal: the element (12) is in S_{n-1} but its conjugate by $(1 n)$ is $(2 n)$ which does not fix n.
(6) Lagrange's theorem tells us that $\left[S_{n}: A_{n}\right]=2$ (we have even and odd permutations for the cosets) $\left[S_{n}: H\right]=n!/ 3$, and $\left[S_{n}: S_{n-1}\right]=n!/(n-1)!=n$.
D. Let $G \xrightarrow{\phi} H$ be a group homomorphism.
(1) Prove that the kernel of ϕ is a normal subgroup of G.
(2) Prove that the group $S L_{n}(\mathbb{Q})$ of determinant one matrices with entries in \mathbb{Q} is a normal subgroup of $G L_{n}(\mathbb{Q})$.

Solution.

(1) Take $k \in \operatorname{ker}(\phi)$ and $g \in G$ arbitrary. We need to show that $g k g^{-1} \in \operatorname{ker}(\phi)$. Apply ϕ to get $\phi(g) \phi(k) \phi\left(g^{-1}\right)$. Since $k \in \operatorname{ker}(\phi)$, this is $\phi(g) e \phi\left(g^{-1}\right)=\phi\left(g g^{-1}\right)=\phi\left(e_{G}\right)=e_{H}$. So $g k g^{-1} \in \operatorname{ker}(\phi)$.
(2) We only need to note that this is the kernel of the group homomorphism det.
E. Conjugation. Let G be a group, and $g, h \in G$. We call the element $g h g^{-1}$ is the conjugate of h by g. Let $c_{g}: G \rightarrow G$ be the function given by the rule $c_{g}(h)=g h g^{-1}$. We call this function conjugation by g.
(1) Show that, if $h_{1}, h_{2} \in G$, then $c_{g}\left(h_{1}\right) c_{g}\left(h_{2}\right)=c_{g}\left(h_{1} h_{2}\right)$. Thus, c_{g} is a group homomorphism from G to itself.
(2) Show that $c_{g^{-1}} \circ c_{g}=c_{g} \circ c_{g^{-1}}$ is the identity on G. Conclude that c_{g} is an automorphism of G : a group isomorphism from G to itself.
(3) Let $G=\mathcal{S}_{n}$, and $h=(a b)$ be a 2-cycle. What is $c_{g}(h) ?^{1}$ If instead $h=\left(a_{1} a_{2} \cdots a_{t}\right)$ is a t-cycle, what do you think $c_{g}(h)$ is? If you know how to write h as a product of disjoint cycles, how can you write $c_{g}(h)$ as a product of disjoint cycles?
(4) Interpret the last problem as follows: $c_{g}(h)$ is "the same permutation as h up to relabeling the elements $\{1, \ldots, n\}$ by g."
(5) Now let $G=\mathrm{GL}_{n}(\mathbb{R})$. If $g=S$ and $h=A$ are matrices in G, explain what is the geometric meaning of $c_{g}(h)$. Compare with the previous part.

Solution.

(1) $c_{g}\left(h_{1}\right) c_{g}\left(h_{2}\right)=\left(g h_{1} g^{-1}\right)\left(g h_{2} g^{-1}\right)=g h_{1}\left(g^{-1} g\right) h_{1} g^{-1}=g h_{1} h_{2} g^{-1}=c_{g}\left(h_{1} h_{2}\right)$.
(2) $\left.c_{g^{-1}} \circ c_{g}\right)(h)=c_{g^{-1}}\left(c_{g}(h)\right)=c_{g^{-1}}\left(g h g^{-1}\right)=g^{-1}\left(g h g^{-1}\right) g=\left(g^{-1} g\right) h\left(g^{-1} g\right)=h$.

So $c_{g^{-1}} \circ c_{g}$ is the identity map. Applying the same argument with g^{-1} in place of g shows the other composition is the identity.
(3) In the homework, we proved that $g(a b) g^{-1}=(g(a) g(b))$. This generalizes to $g\left(a_{1} a_{2} \cdots a_{t}\right) g^{-1}=\left(g\left(a_{1}\right) g\left(a_{2}\right) \cdots g\left(a_{t}\right)\right)$. To check the equality, we deal with different cases. If $i=g\left(a_{j}\right)$ for some $j<t$, then

$$
\left(g\left(a_{1} a_{2} \cdots a_{t}\right) g^{-1}\right)(i)=\left(g\left(a_{1} a_{2} \cdots a_{t}\right) g^{-1}\right) g\left(a_{j}\right)=\left(g\left(a_{1} a_{2} \cdots a_{t}\right)\right)\left(a_{j}\right)=g\left(a_{j+1}\right)
$$

If $i=g\left(a_{t}\right)$, then
$\left(g\left(a_{1} a_{2} \cdots a_{t}\right) g^{-1}\right)(i)=\left(g\left(a_{1} a_{2} \cdots a_{t}\right) g^{-1}\right) g\left(a_{t}\right)=\left(g\left(a_{1} a_{2} \cdots a_{t}\right)\right)\left(a_{t}\right)=g\left(a_{1}\right)$.
If $i \neq g\left(a_{j}\right)$ for any $j=1, \ldots, t$, then $g^{-1}(i) \neq a_{j}$ for any $j=1, \ldots, t$, so

$$
\left(g\left(a_{1} a_{2} \cdots a_{t}\right) g^{-1}\right)(i)=\left(g\left(a_{1} a_{2} \cdots a_{t}\right) g^{-1}(i)=g\left(g^{-1}(i)\right)=i .\right.
$$

Thus, this permutation agrees with the t-cycle $\left(g\left(a_{1}\right) g\left(a_{2}\right) \cdots g\left(a_{t}\right)\right)$.
Finally, since conjugation respects products, given a product of cycles, we can use the last rule to write the conjugate as a product of cycles (of the same lengths).
(4) OK!
(5) We called conjugtion similarity in linear algebra. It corresponds to change of basis. The matrix $c_{g}(h)$ gives the same linear transformation as h in the basis corresponding to the columns of g.
F. The Proof of Theorem 8.11. Let G be a group and H some subgroup. Prove that the following are equivalent by showing (1) implies (2) implies (3) implies (4) implies (5) implies (1).
(1) H is normal.
(2) $g H g^{-1} \subseteq H$ for all $g \in G$.
(3) $g^{-1} H g \subseteq H$ for all $g \in G$.
(4) $g^{-1} H g=H$ for all $g \in G$.
(5) $g H^{-1}=H$ for all $g \in G$.

[^0]Solution. (1) $\Rightarrow(2)$: If H is normal, then for every $h \in H$ and every $g \in G, g h \in H g$, so there exists $h^{\prime} \in H$ such that $g h=h^{\prime} g$, and $g h g^{-1}=h^{\prime} \in H$.
$(2) \Rightarrow(3)$: Since the statement holds for any $g \in G$, it holds for g^{-1}.
$(2) \Leftrightarrow(3) \Leftrightarrow(4)$: Our proof that $(2) \Rightarrow(3)$ also gives $(3) \Rightarrow(2)$, which together make (4).
$(4) \Leftrightarrow(5)$: Replace g by g^{-1}, which we can do since the statements are written over all g.
(5) $\Leftrightarrow(1)$: given any $g \in G$ and any $h \in H, g h g^{-1}=h^{\prime} \in H$, so $g h=h^{\prime} g^{-1} \in H g$; this shows that $g H \subseteq H g$ for all $g \in G$. Similarly we can show that $H g \subseteq g H$ for all $g \in G$, and thus H is normal.
G. Suppose that H is an index two subgroup of G.
(1) Prove that the partition of G up into left cosets is the disjoint union of H and $G \backslash H$.
(2) Prove that the partition of G up into right cosets is the disjoint union of H and $G \backslash H$.
(3) Prove that for every $g \in G, g H=H g$.
(4) Prove the Theorem: Every subgroup of index two in G is normal.

Solution.

(1) If the index is two, there are only two left cosets. Since one is $H=e H$, the other is its complement $G \backslash H$ (as they are disjoint).
(2) Ditto.
(3) Consider any $g \in G$; either $g \in H$ or $g \notin H$. If $g \in H$, then $g H=H=H g$, since h is closed under multiplication and $g H$. If $g \notin H, g H \neq H$, so $g H=G \backslash H$. Similarly, $H g=G \backslash H$, so $g H=H g$.
(4) We just saw that $g H=H g$ for all $g \in G$. By definition, H is normal.
H. Operations on Cosets: Let (G, \circ) be a group and let $N \subseteq G$ be a normal subgroup.
(1) Explain why $N g=g N$. Explain why both cosets contain g.
(2) Take arbitrary $n g \in N g$. Prove that there exists $n^{\prime} \in N$ such that $n g=g n^{\prime}$.
(3) Take any $x \in g_{1} N$ and any $y \in g_{2} N$. Prove that $x y \in g_{1} g_{2} N$.
(4) Define a binary operation \star on the set G / N of left N-cosets as follows:

$$
G / N \times G / N \rightarrow G / N \quad g_{1} N \star g_{2} N=\left(g_{1} \circ g_{2}\right) N .
$$

Think through the meaning: the elements of G / N are sets and the operation \star combines two of these sets into a third set: how? Explain why the binary operation \star is well-defined. Where are you using normality of N ?
(5) Prove that the operation \star in (4) is associative.
(6) Prove that N is an identity for the operation \star in (4).
(7) Prove that every coset $g N \in G / N$ has an inverse under the operation \star in (4).
(8) Conclude that $(G / N, \star)$ is a group.

Solution. This is 8.3 in the book. More next time. Please read 8.3 carefully, and then try this exercise on your own!

[^0]: ${ }^{1}$ Hint: You did this on the homework, so just remember it instead of reproving it.

