
Math 412. Adventure sheet on operations and the definition of rings

DEFINITION: An operation on a set S is a function from S × S to S.

For example, addition and subtraction are operations on set the of integers (or on the set of
real numbers). We might write 󰂏 for an operation, and write x 󰂏 y to indicate the result of
applying an operation to (x, y), just as we would with the symbols +, −, etc.

A ring is a set with two operations, which we usually call addition and multiplication, that
behave in similar ways to addition and multiplication of numbers. To make this precise, we
specify some special abstract properties of operations.

• Commutativity. An operation 󰂏 is commutative if x 󰂏 y = y 󰂏 x for any x, y ∈ S.
– Find an example of an operation on the set of 2 × 2 matrices that is commutative,

and an example of an operation on the same set that is not commutative. Can you
think of more than one of each?

Solution. Commutative: Addition of matrices, elementwise multiplication.
Noncommutative: Multiplication of matrices, subtraction of matrices.

• Associativity. By definition, operations only take two inputs. If we wanted to operate
on three things, we would have to choose two to pair first, then throw in the third. An
operation 󰂏 is associative if we get the same result with either grouping: (x 󰂏 y) 󰂏 z =
x 󰂏 (y 󰂏 z) for any x, y, z in S.

– Find an example of an operation on Z that is associative, and an example of an
operation on Z that is not associative.

Solution. Associative: addition.
Nonassociative: subtraction. For example, (3− (2−1) = 2 ∕= 0 = 3− (2−1)).

– Let S be the set of functions X → X for some other set X . Prove that the operation
on S “composition of functions” is associative.

Solution. Need to check that (f ◦ g) ◦ h = f ◦ (g ◦ h). To do this, show these
two functions agree when evaluated at any x ∈ X . Both sides equal f(g(h(x)))
when evaluated at x, so they are equal as functions.

– Can you find an example of an operation on a set that is associative but is not
commutative? What about the other way around? 1

Solution. Associative but not commutative: composition of functions (If f(x) = x2

and g(x) = −x, then (f ◦ g)(x) = x2 ∕= −x2 = (g ◦ f)(x)).
Commutative but not associative: averaging two numbers. For example,

(avg(avg(2, 4), 6) = 4.5 ∕= 3.5 = avg(2, avg(4, 6))).

1Hint: Maybe something on the list of operations under ”identity” works.
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• Identity. An element e ∈ S is an identity for 󰂏 if e 󰂏 x = x 󰂏 e = x for all x ∈ S.
– Which of the following operations have an identity? If so, what is it:

a) addition on the set R[x] of real polynomials
b) subtraction on the set R[x] of real polynomials
c) multiplication of 2× 2 matrices
d) division of positive real numbers
e) composition of functions
f) averaging two rational numbers
g) maximum of two rational numbers

Solution.
a) yes, the zero constant polynomial
b) no

c) yes,
󰀗
1 0
0 1

󰀘
.

d) no
e) yes, the function f(x) = x
f) no
g) no, but if we considered positive rational numbers, 0 is an identity

– Prove that any operation has at most one identity.

Solution. If e and e′ are identities for 󰂏, then e = e 󰂏 e′ = e′, where the first
equality follows from the fact that e′ is the identity, and the second follows from
the fact that e is the identity.

• Inverses. If 󰂏 is an operation with an identity e, then an inverse for an element x is
another element y such that x 󰂏 y = y 󰂏 x = e.

– For each of the operations above that has an identity, does it have an inverse? How
do you find inverses for your operation?

Solution. For addition of polynomials, inverses exist; they are negatives. For multiplication
of matrices, inverses do not always exist. For composition of functions, inverses again do
not always exist.
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We can also describe operations by tables, like we do with + tables and × tables. Here are
some operation tables for operations on the set {a, b, c, d}: the entry in row x and column y for
operation 󰂏 means x 󰂏 y. Decide for each whether the operation is commutative, has an identity,
and/or has inverses.

♣ a b c d
a a b c d
b b b c d
c c c c d
d d d d d

♦ a b c d
a a d c b
b b a d c
c c b a d
d d c b a

♥ a b c d
a a a a a
b a b c d
c a c a c
d a d c b

♠ a b c d
a a b c d
b b c d a
c c d a b
d d a b c

Bonus: Can you find natural operations on Z4 that correspond to some of these tables?

Solution. ♣ = Maximum ♦ = Subtraction ♥ = Multiplication ♠ = Addition

DEFINITION: A ring is a set R with two operations, denoted “+” and “×” such that
• + and × are both associative,
• + is commutative,
• + has a identity, which we denote 0,
• Every element of R has an inverse for the operation +,
• × has an identity2, which we denote 1,
• The two operations are related by the distributive properties: a× (b+ c) = a× b+a× c

and (a+ b)× c = a× c+ b× c.

A FEW RINGS:
• What does it mean to say that Z is a ring? Is this true? Don’t prove your answer.
• What does it mean to say that ZN is a ring? Is this true? How would you prove it?
• Can you find a pair of operations from the tables above that make {a, b, c, d} into a ring?

Is there only one answer?

2WARNING: Our definition of ring differs from that of the text! Whenever we say ring, we mean a “ring with
identity” in the notation of the book.


