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Warning!

Proceed with caution. These notes are under construction and are 100% guaranteed to
contain typos. If you find any typos or errors, I will be most grateful to you for letting
me know. If you are looking for a place where to learn commutative algebra, I strongly
recommend the following excellent resources:

• Mel Hochster’s Lecture notes

• Jack Jeffries’ Lecture notes (either his notes from UMich 614, CIMAT, or UNL)

• Atiyah and MacDonald’s Commutative Algebra [AM69]

• Matsumura’s Commutative Ring Theory [Mat89], or his other less known book Com-
mutative Algebra [Mat80]

• Eisenbud’s Commutative Algebra with a view towards algebraic geometry [Eis95]
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Chapter 0

Setting the stage

Here are some elementary definitions and facts we will assume you have already seen before.
For more details, see any introductory algebra book, such as [DF04].

0.1 Basic definitions: rings and ideals

Commutative Algebra is the branch of algebra that studies commutative rings and modules
over such rings. For a commutative algebraist, every ring is commutative and has a 1 6= 0.

Definition 0.1 (Ring). A ring is a set R equipped with two binary operations + and ·
satisfying the following properties:

1) R is an abelian group under the addition operation +, with additive identity 0, or 0R if
we need to specify which ring we are talking about. Explicitly, this means that

• a+ (b+ c) = (a+ b) + c for all a, b, c ∈ R,

• a+ b = b+ a for all a, b ∈ R,

• there is an element 0 ∈ R such that 0 + a = a for all a ∈ R, and

• for each a ∈ R there exists an element −a ∈ R such that a+ (−a) = 0.

2) R is a commutative monoid under the multiplication operation ·, with multiplicative
identity 1R or simply 1. Explicitly, this means that

• (a · b) · c = a · (b · c) for all a, b, c ∈ R,

• a · b = b · a for all a, b ∈ R, and

• there exists an element 1 ∈ R such that 1 · a = a · 1 for all a ∈ R.

We typically write ab for a · b.

3) multiplication is distributive with respect to addition, meaning that for all a, b, c ∈ R we
have

a · (b+ c) = a · b+ a · c.

4) 1 6= 0.

1
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In this class, all rings are commutative. In other branches of algebra rings might fail
to be commutative, but we will explicitly say noncommutative ring if that is the case. There
also branches of algebra where rings are allowed to not have a multiplicative identity; we
recommend [Poo19] for an excellent read on the topic of Why rings should have a 1.

Example 0.2. Here are some examples of the kinds of rings we will be talking about.

a) The integers Z, or any quotient of Z, which we write compactly as Z/n.

b) A polynomial ring, by which we typically mean R = k[x1, . . . , xn], a polynomial ring in
finitely many variables over a field k.

c) A quotient of a polynomial ring by an ideal I, say R = k[x1, . . . , xn]/I.

d) Rings of polynomials in infinitely many variables, R = k[x1, x2, . . .].

e) Power series rings R = kJx1, . . . , xnK over a field k. The elements are (formal) power

series
∑
ai>0

ca1,...,anx
a1
1 · · ·xann .

f) While any field k is a ring, we will see that fields on their own are not very exciting from
the perspective of the kinds of things we will be discussing in this class.

Definition 0.3 (ring homomorphism). Given rings R and S, a function R
f−→ S is a ring

homomorphism if f preserves the operations and the multiplicative identity, meaning

• f(a+ b) = f(a) + f(b) for all a, b ∈ R,

• f(ab) = f(a)f(b) for all a, b ∈ R, and

• f(1) = 1.

A bijective ring homomorphism is an isomorphism. We should think about a ring isomor-
phism as a relabelling of the elements in our ring.

Definition 0.4. A subset R ⊆ S of a ring S is a subring if R is also a ring with the structure
induced by S, meaning that the each operation on R is the restrictions of the corresponding
operation on S to R, and the 0 and 1 in R are the 0 and 1 in S, respectively.

Often, we care about the ideals in a ring more than we care about individual elements.

Definition 0.5 (ideal). A nonempty subset I of a ring R is an ideal if it is closed for the
addition and for multiplication by any element in R: for any a, b ∈ I and r ∈ R, we must
have a+ b ∈ I and ra ∈ I. The ideal generated by f1, . . . , fn, denoted (f1, . . . , fn), is the
smallest ideal containing f1, . . . , fn, or equivalently,

(f1, . . . , fn) = {r1f1 + · · · rnfn | ri ∈ R} .

Example 0.6. Every ring has always at least two ideals, the zero ideal (0) = {0} and the
unit ideal (1) = R.
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We will follow the convention that when we say ideal we actually mean an ideal I 6= R.

Exercise 1. The ideals in Z are the sets of multiples of a fixed integer, meaning every ideal
has the form (n). In particular, every ideal in Z can be generated by one element.

This makes Z the canonical example of a principal ideal domain.

Definition 0.7. A domain is a ring with no zerodivisors, meaning that rs = 0 implies that
r = 0 or s = 0. A principal ideal is an ideal generated by one element. A principal ideal
domain or PID is a domain where every ideal is principal.

Exercise 2. Given a field k, R = k[x] is a principal ideal domain, so every ideal in R is of
the form (f) = {fg | g ∈ R}.

Exercise 3. While R = k[x, y] is a domain, it is not a PID. We will see later that every
ideal in R is finitely generated, and yet we can construct ideals in R with arbitrarily many
generators!

Example 0.8. The ring Z[x] is a domain but not a PID. For example, (2, x) is not principal.

Theorem 0.9 (CRT). Let R be a ring and I1, . . . , In be pairwise coprime ideals in R,
meaning Ii + Ij = R for all i 6= j. Then I := I1 ∩ · · · ∩ In = I1 · · · In, and there is an
isomorphism of rings

R/I
∼= // R/I1 × · · · ×R/In

r + I � // (r + I1, . . . , r + In)

.

0.2 Basic definitions: modules

Just like linear algebra is the study of vector spaces over fields, commutative algebra often
focuses on the structure of modules over commutative rings. While in other branches of
algebra modules might be left- or right-modules, our modules are usually two sided, and we
refer to them simply as modules.

Definition 0.10 (Module). Given a ring R, an R-module (M,+) is an abelian group
equipped with an R-action that is compatible with the group structure. More precisely,
there is an operation · : R×M −→M such that

• r · (a+ b) = r · a+ r · b for all r ∈ R and a, b ∈M ,

• (r + s) · a = r · a+ s · a for all r, s ∈ R and a ∈M ,

• (rs) · a = r · (s · a) for all r, s ∈ R and a ∈M , and

• 1 · a = a for all a ∈M .

We typically write ra for r · a, and denote the additive identity in M by 0, or 0M if we need
to distinguish it from 0R.
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The definitions of submodule, quotient of modules, and homomorphism of modules are
very natural and easy to guess, but here they are.

Definition 0.11. If N ⊆M are R-modules with compatible structures, we say that N is a
submodule of M .

A map M
f
// N between R-modules is a homomorphism of R-modules if it is a

homomorphism of abelian groups that preserves the R-action, meaning f(ra) = rf(a) for
all r ∈ R and all a ∈ M . We sometimes refer to R-module homomorphisms as R-module
maps, or maps of R-modules. An isomorphism ofR-modules is a bijective homomorphism,
which we really should think about as a relabeling of the elements in our module. If two
modules M and N are isomorphic, we write M ∼= N .

Given an R-module M and a submodule N ⊆ M , the quotient module M/N is an
R-module whose elements are the equivalence classes under the relation on M given by
a ∼ b ⇔ a − b ∈ N . One can check that this set naturally inherits an R-module structure
from the R-module structure on M , and it comes equipped with a natural canonical map
M −→M/N induced by sending 1 to its equivalence class.

Example 0.12. The modules over a field k are precisely all the k-vector spaces. Linear
transformations are precisely all the k-module maps.

Example 0.13. The Z-modules are precisely all the abelian groups.

Example 0.14. When we think of the ring R as a module over itself, the submodules of R
are precisely the ideals of R.

Exercise 4. The kernel ker f and image im f of an R-module homomorphism M
f
// N

are submodules of M and N , respectively.

Theorem 0.15 (First Isomorphism Theorem). If M
f−→ N is a homomorphism of R-modules,

then M/ ker f ∼= im f .

0.3 Why study commutative algebra?

There are many reasons why one would want to study commutative algebra. For starters, it’s
fun! Also, modern commutative algebra has connections with many fields of mathematics,
including:

• Algebra Geometry

• Algebraic Topology

• Homological Algebra

• Category Theory

• Number Theory

• Arithmetic Geometry

• Combinatorics

• Invariant Theory

• Representation Theory

• Differential Algebra

• Lie Algebras

• Cluster Algebras



Chapter 1

Finiteness conditions

We start our study of commutative algebra by discussing modules and algebras, the most
important structures over a given ring. We will discuss module-finite versus algebra-finite
ring extensions, the relationship between the two concepts, and how they relate to integral
extensions. We will then be ready to discuss noetherian rings; most of the rings we will be
interested in are noetherian, as it often happens in commutative algebra.

1.1 Modules

In many ways, commutative algebra is the study of finitely generated modules. While vector
spaces make for a great first example of modules, many of the basic facts we are used to
from linear algebra are often a little more subtle in commutative algebra. These differences
are features, not bugs. The first big noticeable difference between vector spaces and general
modules is that while every vector space has a basis, most modules do not.

Definition 1.1. Let M be an R-module and Γ ⊆ M . The submodule of M generated
by Γ, denoted

∑
m∈ΓRm, is the smallest (with respect to containment) submodule of M

containing Γ. We say Γ generates M , or is a set of generators for M , if
∑

m∈ΓRm = M ,
meaning that every element in M can be written as a finite linear combination of elements
in Γ. A basis for an R-module M is a generating set Γ for M such that

∑
i aiγi = 0 implies

ai = 0 for all i. An R-module is free if it has a basis.

Example 1.2. Every vector space over a field k is a free k-module.

Remark 1.3. Every free R-module is isomorphic to a direct sum of copies of R. To construct
such an isomorphism for the free R-module M , take a basis Γ = {γi}i∈I for M and let

⊕i∈IR π //M

(ri)i∈I //
∑
i

riγi.

The condition that Γ is a basis for M is equivalent to π being an isomorphism of R-modules.

5
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One of the key things that makes commutative algebra so rich and beautiful is that most
modules are in fact not free. In general, every R-module has a generating set — for example,
M itself. Given some generating set Γ for M , we can always write a presentation

⊕i∈IR π //M

(ri)i∈I //
∑
i

riγi.

for M , but in general π will have a nontrivial kernel. A nonzero kernel element (ri)i∈I ∈ kerπ
corresponds to a relation between the generators of M .

Remark 1.4. A homomorphism of R-modules M −→ N is completely determined by the
images of the elements on any given set of generators for M .

Lemma 1.5. The following are equivalent:

1) Γ generates M as an R-module.

2) Every element of M can be written as a finite linear combination of the elements of Γ
with coefficients in R.

3) The homomorphism θ : R⊕Y →M , where R⊕Y is a free R-module with basis Y in bijection
with Γ via θ(yi) = γi, is surjective.

Remark 1.6. The equivalence between 1) and 2) in Lemma 1.5 says that the submodule
generated by Γ is exactly the set of all finite linear combinations of elements in Γ with
coefficients in R, which explains the notation

∑
m∈Γ Rm.

Definition 1.7. We say that a module M is finitely generated if we can find a finite
generating set for M .

A better name might be finitely generatable, since we do not need to know an actual finite
set of generators to say that a module is finitely generated. The simplest finitely generated
modules are the cyclic modules.

Example 1.8. An R-module is cyclic if it can be generated by one element. Equivalently,
we can write M as a quotient of R by some ideal I. Indeed, given a generator m for M , the

kernel of the map R
π //M induced by 1 7→ m is some ideal I. Since we assumed that m

generates M , π is automatically surjective, and thus induces an isomorphism R/I ∼= M .

Remark 1.9. More generally, if an R-module has n generators, we can naturally think
about it as a quotient of Rn by the submodule of relations among those n generators. More
precisely, if M is generated by m1, . . . ,mn ∈M , then the homomorphism of R-modules

Rn π //M

(r1, . . . , rn) // r1m1 + · · ·+ rnmn

that sends each of the canonical generators ei of Rn to mi is surjective; more precisely, this
is a presentation for M . By the First Isomorphism Theorem, M ∼= Rn/ kerπ.



7

Macaulay2. Defining free modules in Macaulay2 is easy:

i1 : R = QQ[x,y,z];

i2 : M = R^3
3

o2 = R

o2 : R-module, free

Note that from now on and until we reset Macaulay2, whenever you write R it will be read
as a ring, not a module; if instead you want to refer to the module R, you can write it as
R^1. Alternatively, you can also use the command module and write module R. If you do
calculations that require a module and not a ring, it is important to be careful about whether
you write R or R^1; this is an easy way to get an error message.

If we want to define a module that happens to be an ideal, but we want to think about
it as a module, we can simply use the command module to turn the ideal into a module:

i3 : I = ideal"xy,yz"

o3 = ideal (x*y, y*z)

o3 : Ideal of R

i4 : N = module I

o4 = image | xy yz |
1

o4 : R-module, submodule of R

If we forget that this is actually an ideal, and simply think about as a submodule of
the module R, we can also view this module as the image of a map, as we described in
Remark 1.9: if a submodule of Rm has n generators, we can view it as the the image of the
map Rn → Rm that sends each of the canonical generators of Rn to the generators we chose
for our module. In our example, our module is the image of the following map from R2 to R:

i5 : phi = map(R^1,R^2,{{x*y,y*z}})

o5 = | xy yz |
1 2

o5 : Matrix R <--- R

i6 : L = image phi

o6 = image | xy yz |
1

o6 : R-module, submodule of R
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Note that above, when we first defined the module N , Macaulay2 immediately stored that
information in this exact way, as the image of the same map we just defined. This is useful
to keep in mind when you see the results for a computation: if a module is given to us as
the image of a matrix, then we are being told that our module is a submodule of some free
module. If the matrix has n rows, then that means our module is a submodule of Rn. Each
column corresponds to a generator of our module (as a submodule of Rn).

Of course that the modules M , N , and L we have defined are all the same module: the
ideal (xy, yz). It is our job to know that; depending on how you ask the question, Macaulay2
might not be able to identify this. Finally, we can also describe this module by saying that
it has two generators, say f and g, and there is a unique relation between them:

−zf + yg = 0.

This means that our module is the quotient of R2 by the submodule generated by the relation
(−z, y). We can write this as the quotient of R2 by the image of a map landing in R2, meaning
it is the cokernel of a map.

i7 : psi = map(R^2,R^1,{{-z},{y}})

o7 = | -z |
| y |

2 1
o7 : Matrix R <--- R

i8 : K = coker psi

o8 = cokernel | -z |
| y |

2
o8 : R-module, quotient of R

When a module is given to us in this format, as the cokernel of some matrix, we are essentially
being given a presentation: the number of rows is the number of generators, while each
column corresponds to a relation among those generators. If one the vector (r1, . . . , rn)
appears in a column of the matrix, that means that the generators m1, . . . ,mn satisfy the
relation

r1m1 + · · ·+ rnmn = 0.

Keep in mind that when you do a calculation and the result is a module given to you in
this format, Macaulay2 will not necessarily respond with a minimal presentation: one of
the generators given might actually be a linear combination of the remaining ones, so there
might be more generators than necessary, and there might be superfluous relations which
follow as linear combinations of the others. You might be able to get rid of some superfluous
generators and relations using the command prune. We will discuss this in more detail when
we talk about local rings.
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1.2 Algebras

Definition 1.10 (Algebra). Given a ring R, an R-algebra is a ring S equipped with a ring
homomorphism φ : R → S. This defines an R-module structure on S given by restriction
of scalars: for each r ∈ R and s ∈ S, rs := φ(r)s. This R-module structure on S is
compatible with the internal multiplication of S i.e.,

r(st) = (rs)t = s(rt) for all r ∈ R, s, t ∈ S.

We will call φ the structure homomorphism of the R-algebra S.

Example 1.11.

1) If A is a ring and x1, . . . , xn are indeterminates, the inclusion map A ↪→ A[x1, . . . , xn]
makes the polynomial ring into an A-algebra.

2) More generally, any inclusion map R ⊆ S gives S an R-algebra structure. In this case
the R-module multiplication coincides with the internal (ring) multiplication on S.

3) Any ring comes with a unique structure as a Z-algebra, since there is a unique ring
homomorphism Z→ R: the one given by n 7→ n · 1R.

Definition 1.12 (algebra generation). Let S be an R-algebra with structure homomorphism
ϕ and let Λ ⊆ S be a set. The R-algebra generated by a subset Λ of S, denoted R[Λ],
is the smallest (with respect to containment) subring of S containing Λ and ϕ(R). A set of
elements Λ ⊆ S generates S as an R-algebra if S = R[Λ].

Note that there are two different meanings for the notation R[S] for a ring R and set
S: one calls for a polynomial ring, and the other calls for a subring of something. If S is a
subset of elements of some other larger ring which is clear from context, then we are talking
about the algebra generated by S; in contrast, if S is just a set of indeterminates, then we
are talking about a polynomial ring in those variables.

This can be unpackaged more concretely in a number of equivalent ways:

Lemma 1.13. The following are equivalent:

1) Λ generates S as an R-algebra.

2) Every element in S admits a polynomial expression in Λ with coefficients in φ(R), i.e.

S =

{∑
finite

φ(ri1,...,in)λi11 · · ·λinn | rl ∈ R, λj ∈ Λ, ij > 0

}
.

3) If R[X] is a polynomial ring on a set of indeterminates X in bijection with Λ, then the
R-algebra homomorphism

R[X] π // S

xi
� // λi

is surjective.
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Proof. Let S =
{∑

finite φ(a)λi11 · · ·λinn | a ∈ A, λj ∈ Λ, ij ∈ N
}

. For the equivalence between
2) and 3), we note that S is the image of π. In particular, S is a subring of R. It then follows
from the definition that 1) implies 2). Conversely, any subring of R containing φ(A) and Λ
certainly must contain S, so 2) implies 1).

Let S be an R-algebra generated by Λ, let π be the surjective map in part 3) of
Lemma 1.13, and let I := kerπ. By the First Isomorphism Theorem, we have a ring iso-
morphism S ∼= R[X]/I. The elements of I are the relations among the generators in Λ. If
we understand the ring R and generators and relations for S over R, we can get a pretty
concrete understanding of S.

Note that the homomorphism π need not be injective. If the homomorphism π is injective
(and thus an isomorphism) we say that S is a free algebra; a free algebra on R is isomorphic
to a polynomial ring on R. The ideal I = ker(π) measures how far R is from being a free
R-algebra and is called the set of relations on Λ.

Example 1.14. You may have seen this used in Z[
√
d] for some d ∈ Z to describe the ring

{a+ b
√
d | a, b ∈ Z}.

The Z-algebra generated by
√
d in the most natural place, the algebraic closure of Q, is

exactly the set above. The point is that for any power (
√
d)n, we can always write n = 2q+r

with r ∈ {0, 1}, so (
√
d)n = dq(

√
d)r is in the algebra generated by Z and

√
d.

We can also write the one-generated Z-algebra Z[
√
d] as a quotient of a polynomial ring

in one variable: if d is not a perfect square, the map π in part 3) of Lemma 1.13 is

Z[x] π // Z[
√
d]

x � //
√
d

and its kernel is generated by x2 − d, so Z[
√
d] ∼= Z[x]/(x2 − d).

Similarly, the ring Z[ 3
√
d] can be written as

Z[
3
√
d] = {a+ b

3
√
d+ c

3
√
d2 | a, b, c ∈ Z},

which is a quotient of Z[x, y], and the map π in part 3) of Lemma 1.13 is

Z[x, y] π // Z[ 3
√
d]

x � // 3
√
d

y � // 3
√
d2.

Macaulay2. Unfortunately, Macaulay2 does not understand subalgebras directly, only quo-
tient rings. But as we have discussed, any R-algebra can be thought of as a quotient of a
polynomial ring over R. For example, the Veronese algebra V = Q[x2, xy, xz, y2, yz, z2] is a
quotient of a polynomial ring over Q in 6 variables, since it has 6 algebra generators. More
precisely, V is the image of the map

Q[w1, . . . , w6] π // R

(w1, . . . , w6) � // (x2, xy, xz, y2, yz, z2)

so by the First Isomorphism Theorem, V ∼= Q[w1, . . . , w6]/ kerπ.
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i4 : use R;

i5 : aux = QQ[w_1 .. w_6]

o5 = aux

o5 : PolynomialRing

i6 : p = map(R,aux,{x^2,x*y,x*z,y^2,y*z,z^2})
2 2 2

o6 = map (R, aux, {x , x*y, x*z, y , y*z, z })

o6 : RingMap R <--- aux

i7 : V = aux/ker p

o7 = V

o7 : QuotientRing

To do calculations with V , note that w1 is actually x2, w2 is xy, and so on.

Definition 1.15. We say that ϕ : R → S is algebra-finite, or S is a finitely generated
R-algebra, or S is of finite type over R, if there exists a finite set of elements f1, . . . , ft ∈ S
that generates S as an R-algebra.

A better name might be finitely generatable, since we do not need to know an actual finite
set of generators to say that an algebra is finitely generated. From the discussion above,
we conclude that S is a finitely generated R-algebra if and only if S is a quotient of some
polynomial ring R[x1, . . . , xd] over R in finitely many variables. If S is generated over R by
f1, . . . , fd, we will use the notation R[f1, . . . , fd] to denote S. Of course, for this notation
to properly specify a ring, we need to understand how these generators behave under the
operations; this is no problem if R and f are understood to be contained in some larger ring.

There are many basic questions about algebra generators that are surprisingly difficult.
Let R = C[x1, . . . , xn] and f1, . . . , fn ∈ R. When do f1, . . . , fn generate R over C? It is not
too hard to show that the Jacobian determinant

det


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn


must be a nonzero constant. It is a big open question whether this is in fact a sufficient
condition!

1.3 Algebra-finite versus module-finite

Given an R-algebra S, we can consider the algebra structure of S over R, or its module
structure over R. So instead of asking about how S is generated as an algebra over R, we
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can ask how it is generated as a module over R. We say S is module-finite over R if it is
finitely generated as an R-module, and algebra-finite over R if it is finitely generated as an
R-algebra. The notion of module-finite is much stronger than algebra-finite, since a linear
combination is a very special type of polynomial expression.

Lemma 1.16.

• If M is a finitely generated R-module, then any generating set for M as an R-module
contains a finite subset that generates M .

• If the ring S is algebra-finite over R, then any generating set for S as an R-algebra
contains a finite subset that also generates S as an R-algebra.

Proof. Let Γ be a generating set for M as an R-module. If M is a finitely generated R-
module, then we can find elements f1 . . . , fr that generate M as an R-module. Since Γ
generatesM , for each i we can find finitely many elements γi,1, . . . , γi,ni

∈ Γ and R-coefficients
ri,1, . . . , ri,ni

such
fi = ri,1γi,1 + · · ·+ ri,ni

γi,ni
.

The submodule N of M generated by all the γi,j contains the elements f1, . . . , fn, but since
M = Rf1 + · · ·+ fn, we conclude that M is generated by those finitely many γi,j, and thus
by a finite subset of Γ.

The other proof is essentially the same, with the appropriate replacements: whenever we
talk about a set that generates M as an R-module, we should instead consider a set that
generates S as an R-algebra, and instead of taking linear combinations of elements we should
consider polynomials in those elements with R-coefficients.

Remark 1.17. If S is an R-algebra,

• R ⊆ S is algebra-finite if S = R[f1, . . . , fn] for some f1, . . . , fn ∈ S.

• R ⊆ S is module-finite if S = Rf1 + · · ·+Rfn for some f1, . . . , fn ∈ S.

Algebra generating sets can be very different from module generating sets.

Example 1.18. Given n > 2, the Q-algebra S = Q[x]/(xn) is generated as an algebra by the
element x. Note, however, that this is not a free Q-algebra: x satisfies the algebra relation
xn = 0. When we think about it as a Q-module, x does not generate S, since we are no
longer allowed to take products of x by itself. The set {1, x, . . . xn} is a generating set for S
as a module; this is of course the same as asking for a basis for the Q-vector space S.

Lemma 1.19. If S is a module-finite R-algebra, then it is also algebra-finite.

Proof. Let S = Rf1 + · · ·+Rfn, meaning that f1, . . . , fn is a set of module generators for S
over R. Note that every R-linear combination of f1, . . . , fn is also an element of R[f1, . . . , fn],
and thus S is a subalgebra of R[f1, . . . , fn]. On the other hand, since f1, . . . , fn ∈ S and S
is an R-algebra, every polynomial in f1, . . . , fn with coefficients in R is also in S, and thus
S = R[f1, . . . , fn], so that S is algebra-finite over R.

The converse, however, is false: it is harder to be module-finite than algebra-finite.
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Example 1.20.

a) The Gaussian integers Z[i] satisfy the well-known property (or definition, depending on
your source) that any element z ∈ Z[i] admits a unique expression z = a+bi with a, b ∈ Z.
That is, Z[i] is generated as a Z-module by {1, i}; moreover, {1, i} is a free module basis!
As a Z-algebra, Z[i] is generated by i, but it is not a free Z-algebra, since i2 − 1 = 0.

b) If R is a ring and x an indeterminate, the algebra-finite extension R ⊆ R[x] is not
module-finite. Indeed, R[x] is a free R-module on the basis {1, x, x2, x3, . . . }.

c) Another map that is not module-finite is the inclusion R := k[x] ⊆ k[x, 1
x
] =: S. First,

note that any element of k[x, 1
x
] can be written in the form f(x)

xn
for some f ∈ k[x] and

some n > 0. Now any finitely generated R-submodule of S is of the form

M =
∑
i

R · fi(x)

xni
=
∑
i

k[x] · fi(x)

xni
.

If n := max{ni}i, then M ⊆ 1
xn
k[x] 6= k[x, 1

x
] = S.

d) Even innocent looking examples can be quite complicated. For example, we claim that
the extension Z ⊆ Q is neither module-finite nor algebra-finite. To see that, we first claim
that the set

P =

{
1

p
| p prime integer

}
generates Q as a Z-algebra. The key point here is the Fundamental Theorem of Arith-
metic: since any positive integer n can be written as a product n = pa11 · · · pass where the
pi are all prime and the ai > 0 are nonnegative integers, we see that the rational number
m
n
6= 0 can be written as

m

n
= m

(
1

p1

)a1
· · ·
(

1

ps

)as
∈ Z

[
1

p1

, . . . ,
1

ps

]
⊆ Z[P ].

On the other hand, note that any finite subset of P is contained in{
1

p
| p 6 q prime integer

}
for some fixed prime q, and that

Z
[

1

p
| p 6 q is prime

]
contains only rational numbers whose denominator is a product of primes smaller than q.
But there are infinitely many primes, and thus this cannot be all of Q. By Lemma 1.16,
we can conclude that Q is not a algebra-finite over Z. But then Q cannot be module-finite
over Z, by Lemma 1.19.
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Lemma 1.21. If R ⊆ S is module-finite and N is a finitely generated S-module, then N is
a finitely generated R-module by restriction of scalars. In particular, the composition of two
module-finite ring maps is module-finite.

Proof. Let S = Ra1 + · · ·+Rar and N = Sb1 + · · ·+ Sbs. Then we claim that

N =
r∑
i=1

s∑
j=1

Raibj.

Indeed, given n =
∑s

j=1 sjbj, rewrite each sj =
∑r

i=1 rijai and substitute to get

n =
r∑
i=1

s∑
j=1

rijaibj

as an R-linear combination of the aibj.

Remark 1.22. Let A ⊆ B ⊆ C be rings. It follows from the definitions that

•
A ⊆ B algebra-finite

and
B ⊆ C algebra-finite

=⇒ A ⊆ C algebra-finite

• A ⊆ C algebra-finite =⇒ B ⊆ C algebra-finite.

However, A ⊆ C algebra-finite 6=⇒ A ⊆ B algebra-finite.

Example 1.23. Let k be a field and

B = k[x, xy, xy2, xy3, · · · ] ⊆ C = k[x, y],

where x and y are indeterminates. While B and C are both k-algebras, C is a finitely
generated k-algebra, while B is not. To see this, first note by Lemma 1.16 it is sufficient
to show that no finite subset of {xyn | n > 1} generates B over k. Since any such subset
is contained in {xyn | 1 6 n 6 m} for some fixed m, it is sufficient to show that B is not
k[x, xy, . . . , xym] for any m. Now note that every element of k[x, xy, . . . , xym] is a k-linear
combination of monomials xiyj with j 6 mi, so this ring does not contain xym+1. Therefore,
B is not a finitely generated A-algebra.

Remark 1.24. Let A ⊆ B ⊆ C be rings. It follows from the definitions that

•
A ⊆ B module-finite

and
B ⊆ C module-finite

=⇒ A ⊆ C module-finite

• A ⊆ C module-finite =⇒ B ⊆ C module-finite.

However, we will see that A ⊆ C module-finite 6=⇒ A ⊆ B module-finite. This con-
struction is a bit more involved, so we will leave it for the problem sets.

Remark 1.25. Any surjective ring homomorphism ϕ : R → S is both algebra-finite and
module-finite, since S must then be generated over R by 1. Moreover, we can always factor
ϕ as the surjection R // // R/ ker(ϕ) followed by the inclusion R/ ker(ϕ) ↪→ S, so to under-
stand algebra-finiteness or module-finiteness it suffices to restrict our attention to injective
homomorphisms.
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1.4 Integral extensions

In field theory, there is a close relationship between (vector space-)finite field extensions and
algebraic equations. The situation for rings is similar, but much more subtle.

Definition 1.26 (Integral element/extension). Let R be an A-algebra. The element r ∈ R
is integral over A if there are elements a0, . . . , an−1 ∈ A such that

rn + an−1r
n−1 + · · ·+ a1r + a0 = 0,

we say that r satisfies an equation of integral dependence over A. We say that R is
integral over A if every r ∈ R is integral over A.

Integral automatically implies algebraic, but the condition that there exists an equation
of algebraic dependence that is monic is stronger in the setting of rings. This is very different
to what happens over fields, where algebraic and integral are equivalent conditions.

Example 1.27. Let’s see some examples of elements that are integral over Z, and others
that are not. First, consider the Z-algebra R = Z[

√
2] = {a + b

√
2 | a, b ∈ Z}. The element√

2 is integral over Z, since it satisfies the equation of integral dependence x2 − 2 = 0.
On the other hand, 1

2
∈ Q is not integral over Z: if a0, . . . , an−1 ∈ Z are such that(

1

2

)n
+ an−1

(
1

2

)n−1

+ · · ·+ a0 = 0,

then multiplying by 2n gives

1 + 2an−1 + · · ·+ 2na0 = 0,

which is impossible for parity reasons (the left hand-side is odd!). Notice, in contrast, that
1
2

is algebraic over Z, since it satisfies 2x− 1 = 0.

Definition 1.28. Consider an an inclusion of rings A ⊆ R. The integral closure of A in
R is the set of elements in R that are integral over A. We say A is integrally closed in R if
A is its own integral closure in R. The integral closure of a domain R in its field of fractions
is usually denoted by R. A normal domain is a domain R that is integrally closed in its
field of fractions, meaning R = R.

Example 1.29. The ring of integers Z is a normal domain, meaning its integral closure in
its fraction field Q is Z itself. The key idea to show this is similar to the argument we used
in Example 1.27 to show that 1

2
is not integral over Z.

In fact, this is a special case of the fact that every UFD is normal.

Exercise 5. Show that every unique factorization domain is normal.

Remark 1.30. We cannot talk about the integral closure of a ring R without specifying in
what extension; the integral closures of R in different extension can be very different. In
Example 1.27, we saw that the integral closure of Z in Z[

√
2] contains at least Z and

√
2,

while Example 1.29 says that the integral closure of Z in Q is Z.
When R is a domain, if we ever refer to the integral closure of R, it is understood that

we mean the integral closure of R in its field of fractions, R.
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When we study integral extensions, we can restrict our focus to inclusion maps A ⊆ R,
just like we did with module-finite and algebra-finite extensions.

Remark 1.31. An element r ∈ R is integral over A if and only if r is integral over the
subring ϕ(A) ⊆ R, so we might as well assume that ϕ is injective.

Proposition 1.32. Consider a ring extension A ⊆ R.

1) If r ∈ R is integral over A, then A[r] is module-finite over A.

2) If r1, . . . , rt ∈ R are integral over A, then A[r1, . . . , rt] is module-finite over A.

Proof.

1) Let r be integral over A, with rn + an−1r
n−1 + · · · + a1r + a0 = 0 for some ai ∈ A. We

claim that A[r] = A+ Ar + · · ·+ Arn−1. Since A[r] is generated by all the powers rm of
r as an A-module, to show that any polynomial p(r) ∈ A[r] is in A + Ar + · · · + Arn−1

it is enough to show that rm ∈ A + Ar + · · · + Arn−1 for all m. Using induction on m,
the base cases 1, r, . . . , rn−1 ∈ A+Ar + · · ·+Arn−1 are obvious. For the induction step,
we need to show that rm ∈ A + Ar + · · · + Arn−1 for all m > n − 1; we can do this by
induction because we can use the equation above to rewrite rm as

rm = −rm−n(an−1r
n−1 + · · ·+ a1r + a0)

= −an−1r
m−1 − · · · a1r

m−n+1 − a0r
m−n,

which is a linear combination of powers of r of degree up to m− 1.

2) Write
A0 := A ⊆ A1 := A[r1] ⊆ A2 := A[r1, r2] ⊆ · · · ⊆ At := A[r1, . . . , rt].

Since ri is integral over A, it is also integral over Ai−1, via the same monic equation that
ri satisfies over A. By part 1), we conclude that the each extension Ai−1 ⊆ Ai is module-
finite. Thus the inclusion A ⊆ A[r1, . . . , rt] is a composition of module-finite maps, and
thus by Remark 1.24 it is also module-finite.

In what follows, we will need the following elementary linear algebra fact, which is actually
very useful in various contexts within commutative algebra. In fact, later in this class we
will use this useful fact again, perhaps when you least expect it. This is a nice example of
an algebra fact that holds over any ring that we can actually reduce to the case of fields.

Definition 1.33. The classical adjoint of an n× n matrix B = [bij] is the matrix adj(B)

with entries adj(B)ij = (−1)i+j det(B̂ji), where B̂ji is the matrix obtained from B by deleting
its jth row and ith column.

Lemma 1.34 (Determinantal trick). Let R be a ring, B ∈Mn×n(R), v ∈ Rn, and r ∈ R.

1) adj(B)B = det(B)In×n.

2) If Bv = rv, then det(rIn×n −B)v = 0.
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Proof.

1) When R is a field, this is a basic linear algebra fact. We will deduce the case of a general
ring from the field case. The ring R is a Z-algebra, so we can write R as a quotient of
some polynomial ring Z[X]. Let ψ : Z[X] // // R be a surjection, aij ∈ Z[X] be such that

ψ(aij) = bij, and let A = [aij]. Note that

ψ(adj(A)ij) = adj(B)ij and ψ((adj(A)A)ij) = (adj(B)B)ij,

since ψ is a homomorphism, and the entries are the same polynomial functions of the
entries of the matrices A and B, respectively. Thus, it suffices to establish

adj(B)B = det(B)In×n

in the case when R = Z[X], and we can do this entry by entry. Now, R = Z[X] is an
integral domain, hence a subring of a field (its fraction field). Since both sides of the
equation

(adj(B)B)ij = (det(B)In×n)ij

live in R and are equal in the fraction field (by linear algebra) they are equal in R. This
holds for all i, j, and thus 1) holds.

2) By assumption, we have (rIn×n −B)v = 0, so by part 1)

det(rIn×n −B)v = adj(rIn×n −B)(rIn×n −B)v = 0.

Theorem 1.35 (Module finite implies integral). Let A ⊆ R be module-finite. Then R is
integral over A.

Proof. Given r ∈ R, we want to show that r is integral over A. The idea is to show that
multiplication by r, realized as a linear transformation over A, satisfies the characteristic
polynomial of that linear transformation.

Suppose that R = Af1 + · · · + Afn. We may assume that f1 = 1, perhaps by adding a
module generator. Since every element in R is an A-linear combination of f1, . . . , fn, this is
in particular true for the elements rf1, . . . , rfn. Thus we can find aij ∈ A such that

rfi =
t∑

j=1

aijfj

for each i. Consider the matrix C = [aij] and the column vector v = (f1, . . . , fn). We can
now write the equalities above more compactly as rv = Cv. By the determinantal trick,
det(rIn×n − C)v = 0. Since we chose one of the entries of v to be 1, we have in particular
that det(rIn×n − C) = 0. Expanding this determinant as a polynomial in r, this is a monic
equation with coefficients in A.

We are now ready to show the following important characterization of module-finite
extensions, which tells us exactly what we need besides algebra-finite to force an extension
to be module-finite:
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Corollary 1.36. An A-algebra R is module-finite over A if and only if R is integral and
algebra-finite over A.

Proof. (⇒): Module-finite implies integral by Theorem 1.35, and algebra-finite by Lemma 1.19.
(⇐): If R = A[r1, . . . , rt] is integral over A, then each ri is integral over A, and this implies
R is module-finite over A by Proposition 1.32,.

Corollary 1.37. If R is generated as an algebra over A by integral elements, then R is
integral over A.

Proof. Let R = A[Λ], with λ integral over A for all λ ∈ Λ. Given r ∈ R, we need to show
that r is integral over A. There is a finite subset L ⊆ Λ such that r ∈ A[L]. This A[L] is now
a finitely-generated algebra generated by integral elements, and thus by Proposition 1.32 it
must be module-finite over A. By Theorem 1.35, module-finite implies integral, and thus
A[L] is an integral extension of A. In particular, r ∈ A[L] is integral over A.

Corollary 1.38. Given any ring extension A ⊆ R, the set of elements of R that are integral
over A form a subring of R.

Proof. By Corollary 1.37, the A-subalgebra of R generated by all elements in R that are
integral over A is integral over A, so it is contained in the set of all elements that are integral
over A: this means that

{integral elements} ⊆ A[{integral elements}] ⊆ {integral elements},

so equality holds throughout, and {integral elements} is a ring.

In other words, the integral closure of A in R is a subring of R containing A.

Example 1.39.

1) The ring Z[
√
d], where d ∈ Z is not a perfect square, is integral over Z. Indeed,

√
d satisfies

the monic polynomial x2 − d, and since the integral closure of Z is a ring containing Z
and
√
d, and Z[

√
d] is the smallest such ring, we conclude that every element in Z[

√
d] is

integral over Z.

2) Let R = C[x, y] ⊆ S = C[x, y, z]/(x2 + y2 + z2). Then we claim that S is module-finite
over R, though to see this we first need to realize R as a subring of S. To do that, consider
the C-algebra homomorphism

R
ϕ

// S

(x, y) � // (x, y).

The kernel of ϕ consists of the polynomials in x and y that are multiples of x2 + y2 + z2,
but any nonzero multiple of x2 +y2 +z2 in C[x, y, z] = R[z] must have z-degree at least 2,
which implies it involves z and thus it is not in C[x, y]. We conclude that ϕ is injective,
and thus R ⊆ S.

Now S is generated over R as an algebra by one element, z, and z satisfies the monic
equation t2 + (x2 + y2) = 0, so S is integral over R.
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Note, however, that not all integral extensions are module-finite.

Example 1.40. Let k be a field, and consider the k[x]-algebra R given by

k[x] ⊆ R = k[x, x1/2, x1/3, x1/4, x1/5, . . .].

Note that x1/n satisfies the monic polynomial tn−x, and thus it is integral over k[x]. Since R
is generated by elements that are integral over k[x], by Corollary 1.37 it must be an integral
extension of A. However, k[x] ⊆ R is not algebra-finite, and thus it is also not module-finite.

Exercise 6. Given ring extensions A ⊆ B ⊆ C, the extensions A ⊆ B and B ⊆ C are
integral if and only if A ⊆ C is integral.

Finally, here is a useful fact about integral extensions that we will use multiple times.

Theorem 1.41. If R ⊆ S is an integral extension of domains, then R is a field if and only
if S is a field.

Proof. Suppose that R is a field, and let s ∈ S be a nonzero element, which is necessarily
integral over R. The ring R[s] is algebra-finite over R by construction, and integral over R
by Corollary 1.37. Since R ⊆ R[s] is integral and algebra-finite, it must also be module-finite
by Corollary 1.36. Since R is a field, this means that R[s] is a finite-dimensional vector space
over R. Since R[s] ⊆ S is a domain, the map R[s]

s−→ R[s] is injective. Notice that this is a
map of finite-dimensional R-vector spaces, and thus it must also be surjective. In particular,
there exists an element t ∈ R[s] such that st = 1, and thus s is invertible. We conclude that
S must be a field.

Now suppose that S is a field, and let r ∈ R. Since r ∈ R ⊆ S, there exists an inverse
r−1 for r in S, which must be integral over R. Given any equation of integral dependence
for r−1 over R, say

(r−1)n + an−1(r−1)n−1 + · · ·+ a0 = 0

with ai ∈ R, we can multiply by rn−1 to obtain

r−1 = −an−1 − · · · − a0r
n−1 ∈ R.

Therefore, r is invertible in R, and R is a field.

Before we move on from algebra-finite and module-finite extensions, we should remark
on what the situation looks like over fields. First, note that over a field, module-finite just
means finite dimensional vector space. While over a general ring the notions of algebra-finite
and module-finite are quite different, they are actually equivalent over a field. This is a very
deep fact, and we will unfortunately skip its proof — since it is a key ingredient in proving
a fundamental result in algebraic geometry, we will leave it for the algebraic geometry class
next semester. This is a nice application of the Artin-Tate Lemma, which we are going to
discuss shortly, together with some facts about transcendent elements. We will skip the
proof, but you can find it in Jeffries’ notes.

Theorem 1.42 (Zariski’s Lemma). A field extension k ⊆ L is algebra-finite if and only if
it is module-finite.

https://jack-jeffries.github.io/CAnotes.pdf
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The following corollary follows immediately from what we proved in this section:

Corollary 1.43. Let k be an algebraically closed field. If the field extension k ⊆ L is
algebra-finite, then k = L.

Proof. By Theorem 1.42, k ⊆ L must be module-finite. By Theorem 1.35, any module-finite
extension must be integral. When we are over a field, integral is the same as algebraic, but
integrally closed fields have no nontrivial algebraic extensions.

We have shown the following about ring extensions:

module-finite

qy #+
algebra-finite integral

The remaining implications are all false:

• Given an indeterminate x, the extension R ⊆ R[x] is algebra-finite but not module
finite nor integral.

• Example 1.40 is an example of an integral extension that is not module-finite nor
algebra-finite.

1.5 We interrupt this broadcast for a very short intro-

duction to exact sequences

Homological techniques play a central role in commutative algebra. Ideally, our study of
commutative algebra would start with a semester long course on homological algebra; but
we are not assuming any homological algebra background, and thus we need to introduce
some elementary homological algebra tools.

Definition 1.44. An exact sequence of R-modules is a sequence

· · · fn−1
//Mn

fn
//Mn+1

fn+1
// · · ·

of R-modules and R-module homomorphisms such that im fn = ker fn+1 for all n. An exact
sequence of the form

0 // A // B // C // 0

is called a short exact sequence.

Example 1.45. Let R = k[x]/(x2), where k is any field. The R
x−→ R has image and kernel

(x), so the following is an exact sequence:

· · · // R
x // R

x // R // · · ·
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Remark 1.46. The sequence
0 //M

f
// N

is exact if and only if f is injective. Similarly,

M
f
// N // 0

is exact if and only if f is surjective. As a consequence, we see that

0 //M
f
// N // 0

is exact if and only if f is an isomorphism. Moreover,

0 // A
f
// B

g
// C // 0

is a short exact sequence if and only if

• f is injective • g is surjective • im f = ker g.

So when this is indeed a short exact sequence, we can identify A with its image f(A),
which makes A = ker g. Moreover, since g is surjective, by the First Isomorphism Theorem
we conclude that C ∼= B/A, so we might abuse notation and identify C with B/A. In
particular, note that C = coker f .

In summary, any short exact sequence encodes an inclusion and its cokernel, or equiva-
lently a surjection on its kernel. To give a short exact sequence

0 // A // B // C // 0

is the same as giving an inclusion of modules A ⊆ B and the corresponding quotient module
B/A.

Example 1.47. The following is a short exact sequence of Z-modules:

0 // Z 2 // Z // Z/2Z // 0.

Indeed, multiplication by 2 on Z is injective, and its cokernel is Z/2Z. Another way to look
at this is to notice that the kernel of the canonical projection map Z → Z/2Z is the ideal

generated by 2, which is a free Z-module with 1 generator. The map Z 2−→ Z corresponds to
the inclusion of that module in Z.

Remark 1.48. Suppose that
0 //M // 0

is an exact sequence. This means that the image of the zero map to M , which is the zero
module, is the same as the kernel of the zero map from M , which is all of M . Thus saying
that

0 //M // 0

is exact is equivalent to saying that M = 0.
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1.6 Noetherian rings

Most rings that commutative algebraists naturally want to study are noetherian. Noethe-
rian rings are named after Emmy Noether, who is in many ways the mother of modern
commutative algebra.

Definition 1.49 (Noetherian ring). A ring R is noetherian if every ascending chain of
ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

eventually stabilizes: there is some N for which In = In+1 for all n > N .

This condition can be restated in various equivalent forms.

Proposition 1.50. Let R be a ring. The following are equivalent:

1) R is a noetherian ring.

2) Every nonempty family of ideals has a maximal element (under ⊆).

3) Every ascending chain of finitely generated ideals of R stabilizes.

4) Given any generating set S for an ideal I, I is generated by a finite subset of S.

5) Every ideal of R is finitely generated.

Proof.
(1)⇒(2): We prove the contrapositive. Suppose there is a nonempty family of ideals with

no maximal element. This means that we can keep inductively choosing larger ideals from
this family to obtain an infinite properly ascending chain, so R is not noetherian.

(2)⇒(1): An ascending chain of ideals is a family of ideals, and the maximal ideal in the
family indicates where our chain stabilizes.

(1)⇒(3): Clear, since (3) is a special case of (1).
(3)⇒(4): Let’s prove the contrapositive. Suppose that there is an ideal I and a generating

set S for I such that no finite subset of S generates I. So for any finite S ′ ⊆ S we have
(S ′) ( (S) = I, so there is some s ∈ S \ (S ′). Thus, (S ′) ( (S ′ ∪ {s}). Inductively, we can
continue this process to obtain an infinite proper chain of finitely generated ideals, so (3)
does not hold.

(4)⇒(5): Clear.
(5)⇒(1): Given an ascending chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

let I =
⋃
n∈N In. In general, the union of two ideals might fail to be an ideal, but the union

of a chain of ideals is an ideal (exercise). By assumption, the ideal I is finitely generated,
say I = (a1, . . . , at). Now since each ai is in I, it must be in some Ini

, by definition. Thus
for any N > maxni, we have a1, . . . , at ∈ IN . But then IN = I, and thus In = In+1 for all
n > N . Thus the original chain stabilizes, and R is noetherian.
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Remark 1.51. When we say that every non-empty family of ideals has a maximal element,
that maximal element does not have to be unique in any way. An ideal I is maximal in
the family F if I ⊆ J for some J ∈ F implies I = J . However, we might have many
incomparable maximal elements in F . For example, every element in the family of ideals in
Z given by

F = {(p) | p is a prime integer}
is maximal.

Remark 1.52. If R is a noetherian ring and S is a non-empty set of ideals in R, not only
does S have a maximal element, but every element in S must be contained in a maximal
element of S. Given an element I ∈ S, the subset T of S of ideals in S that contain I is
nonempty, and must then contain a maximal element J by Proposition 1.50. If J ⊆ L for
some L ∈ S, then I ⊆ L, so L ∈ T , and thus by maximality of J in T , we must J = L. This
proves that J is in fact a maximal element in S, and by construction it contains I.

Example 1.53.

1) If R = k is a field, the only ideals in k are (0) and (1) = k, so k is a noetherian ring.

2) Z is a noetherian ring, since all ideals are principal. More generally, if R is a PID, then
R is noetherian. Indeed, every ideal is finitely generated!

3) As a special case of the previous example, consider the ring of germs of complex analytic
functions near 0,

C{z} := {f(z) ∈ CJzK | f is analytic on a neighborhood of z = 0}.

This ring is a PID: every ideal is of the form (zn), since any f ∈ C{z} can be written as
zng(z) for some g(z) 6= 0, and any such g(z) is a unit in C{z}.

4) A ring that is not noetherian is a polynomial ring in infinitely many variables over a field
k, R = k[x1, x2, . . .]: the ascending chain of ideals

(x1) ⊆ (x1, x2) ⊆ (x1, x2, x3) ⊆ · · ·

does not stabilize.

5) If k is a field, the ring R = k[x, x1/2, x1/3, x1/4, x1/5, . . .] is also not noetherian. A nice
ascending chain of ideals is

(x) ( (x1/2) ( (x1/3) ( (x1/4) ( · · · .

6) The ring of continuous real-valued functions C(R,R) is not noetherian: the chain of ideals

In = {f(x) ∈ C(R,R) | f |[−1/n,1/n] ≡ 0}

is increasing and proper. The same construction shows that the ring of infinitely differen-
tiable real functions C∞(R,R) is not noetherian: properness of the chain follows from, e.g.,
Urysohn’s lemma (though it’s not too hard to find functions distinguishing the ideals in
the chain). Note that if we asked for analytic functions instead of infinitely-differentiable
functions, every element of the chain would be the zero ideal!
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Lemma 1.54. Let R be a ring and I an ideal in R. If R is noetherian, then so is R/I.

Proof. There is an order preserving bijection

{ideals of R that contain I} ←→ {ideals of R/I}

that sends the ideal J ⊇ I to J/I; its inverse is the map that sends each ideal in R/I to its
preimage. Given this bijection, chains of ideals in R/I come from chains of ideals in R that
contain J . This implies that if R is noetherian, then R/I is noetherian as well.

This gives us many more examples of noetherian rings, by simply taking quotients of the
examples above. We will soon show that any polynomial ring over a noetherian ring is also
noetherian; as a consequence, we obtain that any quotient of a polynomial ring over a field
is noetherian. This is the content of Hilbert’s Basis Theorem.

But first, we need to talk about noetherian modules.

Definition 1.55 (Noetherian module). An R-module M is noetherian if every ascending
chain of submodules of M eventually stabilizes.

There are analogous equivalent definitions for modules as we had above for rings; the
proof is analogous, so we leave it as an exercise.

Proposition 1.56 (Equivalence definitions for noetherian module). Let M be an R-module.
The following are equivalent:

1) M is a noetherian module.

2) Every nonempty family of submodules has a maximal element.

3) Every ascending chain of finitely generated submodules of M eventually stabilizes.

4) Given any generating set S for a submodule N , the submodule N is generated by a finite
subset of S.

5) Every submodule of M is finitely generated.

In particular, a noetherian module must be finitely generated.

Remark 1.57. The submodules of a ring are its ideals. Thus a ring R is a noetherian ring if
and only if R is noetherian as a module over itself. However, a noetherian ring need not be a
noetherian module over a subring. For example, consider Z ⊆ Q. These are both noetherian
rings, but Q is not a noetherian Z-module; for example, the following is an ascending chain
of submodules which does not stabilize:

0 (
1

2
Z (

1

2
Z +

1

3
Z (

1

2
Z +

1

3
Z +

1

5
Z ( · · · .

A module B is noetherian if and only if it has a submodule A such that both A and B/A
are noetherian.
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Lemma 1.58 (Noetherianity in exact sequences). In an exact sequence of modules

0 // A
f
// B

g
// C // 0

B is noetherian if and only if A and C are noetherian.

Proof. Assume B is noetherian. Since A is a submodule of B, and its submodules are also
submodules of B, A is noetherian. Moreover, any submodule of B/A is of the form D/A
for some submodule D ⊇ A of B. Since every submodule of B is finitely generated, every
submodule of C is also finitely generated. Therefore, C is noetherian.

Conversely, assume that A and C are noetherian, and let

M1 ⊆M2 ⊆M3 ⊆ · · ·

be a chain of submodules of B. First, note that

M1 ∩ A ⊆M2 ∩ A ⊆ · · ·

is an ascending chain of submodules of A, and thus it stabilizes. Moreover,

g(M1) ⊆ g(M2) ⊆ g(M3) ⊆ · · ·

is a chain of submodules of C, and thus it also stabilizes. Pick a large enough index n such
that both of these chains stabilize. We claim that Mn = Mn+1, so that the original chain
stabilizes as well. To show that, take x ∈Mn+1. Then

g(x) ∈ g(Mn+1) = g(Mn)

so we can choose some y ∈Mn such that g(x) = g(y). Then x− y ∈ ker g = im f = A. Now
note that y ∈Mn ⊆Mn+1, so x− y ∈Mn+1, and thus

x− y ∈Mn+1 ∩ A = Mn ∩ A.

Then x− y ∈Mn, and since y ∈Mn, we must have x ∈Mn as well.

Corollary 1.59. If A and B are noetherian R-modules, then A ⊕ B is a noetherian R-
module.

Proof. Apply the previous lemma to the short exact sequence

0 // A // A⊕B // B // 0 .

Corollary 1.60. A module M is noetherian if and only if Mn is noetherian for some n. In
particular, if R is a noetherian ring then Rn is a noetherian module.

Proof. We will do induction on n. The case n = 1 is a tautology. For n > 1, consider the
short exact sequence

0 //Mn−1 //Mn //M // 0

Lemma 1.58 and the inductive hypothesis give the desired conclusion.
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Proposition 1.61. Let R be a noetherian ring. Given an R-module M , M is a noetherian
R-module if and only if M is finitely generated. Consequently, any submodule of a finitely
generated R-module is also finitely generated.

Proof. If M is noetherian, M is finitely generated by the equivalent definitions above, and
so are all of its submodules.

Now let R be noetherian and M be a finitely generated R-module. Then M is isomorphic
to a quotient of Rn for some n, which is noetherian by Corollary 1.60 and Lemma 1.54.

Remark 1.62. The notherianity hypothesis is important: if R is a non-noetherian ring and
M is a finitely generated R-module, M might not be noetherian. For a dramatic example,
note that R itself is a finitely generated R-module, but not noetherian.

Now we are ready to prove Hilbert’s Basis Theorem. David Hilbert was a big influence
in the early years of commutative algebra, in many different ways. Emmy Noether’s early
work in algebra was in part inspired by some of his work, and he later invited her to join
the Göttingen Math Department — many of her amazing contributions to algebra happened
during her time in Göttingen. Unfortunately, some of the faculty opposed a woman joining
the department, and for her first two years in Göttingen, Noether did not have an official
position nor was she paid. Hilbert’s contributions also include three of the most fundamental
results in commutative algebra — Hilbert’s Basis Theorem, the Hilbert Syzygy Theorem,
and Hilbert’s Nullstellensatz.

Theorem 1.63 (Hilbert’s Basis Theorem). If R is a noetherian ring, then the polynomial
rings R[x1, . . . , xd] and RJx1, . . . , xdK are noetherian for any d > 1.

Proof. We will give the proof for polynomial rings, and at the end we will indicate what the
difference is in the argument for the power series ring case. First, note that by induction on
d, we can reduce to the case d = 1.

Given an ideal I ⊆ R[x], consider the set of leading coefficients of all polynomials in I,

J := {a ∈ R | there is some axn + lower order terms (with respect to x) ∈ I}.

We can check (exercise!) that this is an ideal of R. Since R is noetherian, Proposition 1.50
says that J is finitely generated, so let J = (a1, . . . , at). Pick f1, . . . , ft ∈ R[x] such that the
leading coefficient of fi is ai, and set N = max

i
{deg fi}.

Let f ∈ I. The leading coefficient of f is an R-linear combination of a1, . . . , at. If f
has degree greater than N , then we can cancel off the leading term of f by subtracting
a suitable combination of the fi. Therefore, any f ∈ I can be written as f = g + h
for some h ∈ (f1, . . . , ft) and g ∈ I with degree at most N . In particular, note that
g ∈ I ∩ (R + Rx + · · · + RxN). Since I ∩ (R + Rx + · · · + RxN) is a submodule of the
finitely generated free R-module R + Rx + · · · + RxN , it must also be finitely generated as
an R-module. Given such a generating set, say I ∩ (R+Rx+ · · ·+RxN) = (ft+1, . . . , fs), we
can write any element f ∈ I as an R[x]-linear combination of these generators ft+1, . . . , fs
and the original f1, . . . , ft. Therefore, I = (f1, . . . , ft, ft+1, . . . , fs) is finitely generated as an
ideal in R[x], and R[x] is a noetherian ring.

In the power series case, take J to be the set of coefficients of lowest degree terms.
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Remark 1.64. We can rephrase Hilbert’s Basis Theorem in a way that can be understood
by anyone with a basic high school algebra (as opposed to abstract algebra) knowledge:

Any system of polynomial equations in finitely many variables can be written in terms of
finitely many equations.

Finally, note that an easy corollary of the Hilbert Basis Theorem is that finitely generated
algebras over noetherian rings are also noetherian.

Corollary 1.65. If R is a noetherian ring, then any finitely generated R-algebra is noethe-
rian. In particular, any finitely generated algebra over a field is noetherian.

Proof. Any finitely generated R-algebra is isomorphic to a quotient of a polynomial ring
over R in finitely many variables; polynomial rings over noetherian rings are noetherian, by
Hilbert’s Basis Theorem, and quotients of noetherian rings are noetherian.

The converse to this statement is false: there are lots of noetherian rings that are not
finitely generated algebras over a field. For example, C{z} is not algebra-finite over C. We
will see more examples of these when we talk about local rings.

Finally, we can now prove a technical sounding result that puts together all our finiteness
conditions in a useful way.

Theorem 1.66 (Artin-Tate Lemma). Let A ⊆ B ⊆ C be rings. Assume that

• A is noetherian,

• C is module-finite over B, and

• C is algebra-finite over A.

Then, B is algebra-finite over A.

Proof. Let C = A[f1, . . . , fr] and C = Bg1 + · · ·+Bgs. Then,

fi =
∑
j

bijgj and gigj =
∑
k

bijkgk

for some bij, bijk ∈ B. Let B0 = A[{bij, bijk}] ⊆ B. This is a finitely generated A-algebra; by
Corollary 1.65, since A is noetherian, so is B0.

We claim that C = B0 g1 + · · ·+B0gs. Given an element c ∈ C, write c as a polynomial
expression in f1, . . . , fr. Since the fi are linear combinations of the gi with coefficients in
the bij, we have c ∈ A[{bij}][g1, . . . , gs]. Then using the equations for gigj repeatedly, we can
rewrite c as a linear combination of the gi with coefficients in B0.

Since B0 is noetherian and C is a finitely generated B0-module, C is a noetherian B0-
module, by Proposition 1.61. Since B ⊆ C, then B is also a finitely generated B0-module.
In particular, B0 ⊆ B is algebra-finite. Since A ⊆ B0 is algebra-finite, we conclude that
A ⊆ B is algebra-finite, as required.
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1.7 An application to invariant rings

Historically, commutative algebra has roots in classical questions of algebraic and geometric
flavors, including the following natural question:

Question 1.67. Given a (finite) set of symmetries, consider the collection of polynomial
functions that are fixed by all of those symmetries. Can we describe all the fixed polynomials
in terms of finitely many of them?

To make this precise, let G be a group acting on a ring R. The main case we have in
mind is when R = k[x1, . . . , xd] and k is a field; we let G act trivially on k, and the action
respects the sum and product in the ring:

g ·

(∑
a

cax
a1
1 · · ·x

ad
d

)
=
∑
a

ca(g · x1)a1 · · · (g · xd)ad .

We are interested in the set of elements that are invariant under the action,

RG := {r ∈ R | g(r) = r for all g ∈ G}.

Note that RG is a subring of R. Indeed, given r, s ∈ RG, then

r + s = g · r + g · s = g · (r + s) and rs = (g · r)(g · s) = g · (rs) for all g ∈ G,

since each g is a homomorphism. Note also that if G = 〈g1, . . . , gt〉, then r ∈ RG if and only
if gi(r) = r for i = 1, . . . , t. The question above can now be rephrased as follows:

Question 1.68. Given a finite groupG acting on R = k[x1, . . . , xd], is RG a finitely generated
k-algebra?

Note that RG is a k-subalgebra of R. Even though R is a finitely generated k-algebra, this
does not guarantee a priori that RG is a finitely generated k-algebra — recall Example 1.23,
where we saw a subalgebra of a finitely generated algebra which is nevertheless not finitely
generated.

Example 1.69. Consider the group with two elements G = {e, g}. To define an action of G
on R = k[x], we need only to define g ·x, since e is the identity and g acts linearly. Consider
the action of G on R = k[x] given by g · x = −x, so g · f(x) = f(−x). Suppose that the
characteristic of k is not 2, so −1 6= 1. Write f = anx

n + an−1x
n−1 + · · · + a0. We have

g · xi = (−x)i = (−1)ixi, so

g · f = (−1)nanx
n + (−1)n−1an−1x

n−1 + · · ·+ a0,

which differs from f unless for each odd i, ai = 0. That is,

RG = {f ∈ R | every term of f has even degree}.

Any such f is a polynomial in x2, so we have

RG = k[x2].

In particular, RG is a finitely generated k-algebra.
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Exercise 7. Generalize the last example as follows: let k be a field with a primitive dth
root of unity ζ, and let G = 〈g〉 ∼= Cd act on R = k[x1, . . . , xn] via g ·xi = ζxi for all i. Then

RG = {f ∈ R | every term of f has degree a multiple of d} = k[{monomials of degree d}].

This what is known as the Veronese subring of R of degree d.

Example 1.70 (Standard representation of the symmetric group). Let Sn be the symmetric
group on n letters acting on R = k[x1, . . . , xn] via σ(xi) = xσ(i). For example, if n = 3, then
f = x2

1 + x2
2 + x2

3 is invariant, while g = x2
1 + x1x2 + x2

2 + x2
3 is not, since swapping 1 with 3

gives a different polynomial.
You may recall the Fundamental Theorem of Symmetric Polynomials says that every

element of RSn can be written as polynomial expression in the elementary symmetric poly-
nomials

e1 = x1 + · · ·+ xn

e2 =
∑
xixj

...

en = x1x2 · · ·xn.

More precisely, RSn = k[e1, . . . , en]. For example, f above is e2
1−2e2. In fact, any symmetric

polynomial can be written like so in a unique way, so RSn is a free k-algebra. So even though
we have infinitely many invariant polynomials, we can understand them in terms of only
finitely many of them, which are fundamental invariants.

Proposition 1.71. Let k be a field, R be a finitely-generated k-algebra, and G a finite group
of automorphisms of R that fix k. Then RG ⊆ R is module-finite.

Proof. By Corollary 1.36, integral and algebra-finite implies module-finite, so we will show
that R is algebra-finite and integral over RG.

First, since k ⊆ RG and R is generated finitely generated k-algebra, it is generated by
the same finite set as an RG-algebra as well. Thus RG ⊆ R is algebra-finite.

To show that RG ⊆ R is integral, let us first extend the action of G on R to R[t] trivially,
meaning that we will let G fix t. Given r ∈ R, consider the polynomial

Fr(t) :=
∏
g∈G

(t− g · r) ∈ R[t].

Now G fixes Fr(t), since for each h ∈ G,

h · Fr(t) = h
∏
g∈G

(t− g · r) =
∏
g∈G

(h · t− (hg) · r) = Fr(t)

Thus, Fr(t) ∈ (R[t])G. Notice that (R[t])G = RG[t], since

g(ant
n + · · ·+ a0) = ant

n + · · ·+ a0 =⇒ (g · an)tn + · · ·+ (g · a0) = ant
n + · · ·+ a0.

Therefore, Fr(t) ∈ RG[t]. The leading term (with respect to t) of Fr(t) is t|G|, so Fr(t) is
monic. On the other hand, one of the factors of Fr(t) is (t− r), so Fr(r) = 0. Therefore, r
satisfies a monic polynomial with coefficients in RG, and thus R is integral over RG.
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Theorem 1.72 (Noether’s finiteness theorem for invariants of finite groups). Let k be a
field, R be a polynomial ring over k, and G be a finite group acting k-linearly on R. Then
RG is a finitely generated k-algebra.

Proof. Observe that k ⊆ RG ⊆ R, that k is noetherian, k ⊆ R is algebra-finite, and RG ⊆ R
is module-finite. The desired result is now a corollary of the Artin-Tate Lemma.

Chapter summary

• R is a noetherian ring ks +3 every ideal I in R is noetherian

• M is a noetherian R-module
general+3
ks
R Noeth

M is a finitely generated R-module

A ⊆ R extension of rings:

• A ⊆ R module-finite ks +3 R = Af1 + · · ·+ Afn
for some fi ∈ R

ks +3 R ∼= An/N
N ⊆ An submod

• A ⊆ R algebra-finite ks +3 R = A[f1, . . . , fn]
for some fi ∈ R

ks +3 R ∼= A[x1, . . . , xi]/I
xi indeterminates

• A ⊆ R algebra-finite ks +3 R = A[f1, . . . , fn], fi ∈ R
• A ⊆ R algebra-finite, A noetherian =⇒ R noetherian ring

• A ⊆ R module-finite ks +3

{
algebra-finite
and integral

6=⇒
6=⇒ module-finite

Artin-Tate
Lemma:

A
Noeth

⊆ B ⊆ C︸ ︷︷ ︸
mod-fin︸ ︷︷ ︸

alg-fin

=⇒ A ⊆ B is algebra-finite



Chapter 2

Graded rings

The main purpose of this chapter is to set up some background and notation we will use
throughout the rest of the course.

2.1 Graded rings

When we think of a polynomial ring R, we often think of R with its graded structure, even
if we have never formalized what that means. Other rings we have seen also have a graded
structure, and this structure is actually very powerful.

Definition 2.1. Let T be a monoid; in many examples we will take T = N, which is a
monoid since we follow the convention that 0 is a natural number. A ring R is T -graded if
we can write a direct sum decomposition of R as an abelian group indexed by T ,

R =
⊕
a>0

Ra,

such that
RaRb ⊆ Ra+b for every a, b ∈ T.

This means that for all r ∈ Ra and s ∈ Rb, we have rs ∈ Ra+b.
An element in one of the summands Ra is said to be homogeneous of degree a; we

write |r| or deg(r) to denote the degree of a homogeneous element r.

By definition, an element in a graded ring is a unique sum of homogeneous elements,
which we call its homogeneous components or graded components. One nice thing
about graded rings is that many properties can usually be checked on homogeneous elements,
and these are often easier to deal with.

Lemma 2.2. Let R be a T -graded ring.

a) 1 is homogeneous of degree 0 ∈ T (the identity of T ).

b) R0 is a subring of R.

c) Each Ra is an R0-module.

31
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Proof.

a) Write 1 =
∑

a ra with ra homogeneous of degree a. Then r0 = r0(
∑

a ra) =
∑

a r0ra
implies r0ra = 0 for a 6= 0. Similarly, for any other a we have ra = ra(

∑
b rb), and thus

ra = rar0 (here is where we use the cancellative assumption). Thus ra = 0 for a 6= 0, so
1 ∈ R0.

b) We have shown that 1 ∈ R0. Moreover, R0 is a subgroup under addition, and r, s ∈ R0

implies rs ∈ R0.

c) By assumption, Ra is a subgroup under addition. Given r ∈ R0 and s ∈ Ra we must have
rs ∈ Ra.

Example 2.3.

a) Any ring R is trivially an N-graded ring, by setting R0 = R and Rn = 0 for n 6= 0.

b) If k is a field and R = k[x1, . . . , xn] is a polynomial ring, there is an N-grading on R called
the standard grading where Rd is the k-vector space with basis given by the monomials
of total degree d, meaning those of the form xα1

1 · · ·xαn
n with

∑
i αi = d. For example,

x2
1 + x2x3 is homogeneous in the standard grading, while x2

1 + x2 is not.

c) If k is a field, and R = k[x1, . . . , xn] is a polynomial ring, we can give different N-gradings
on R by fixing some tuple (β1, . . . , βn) ∈ Nn and letting xi be a homogeneous element of
degree βi; we call this a grading with weights (β1, . . . , βn).

For example, in k[x1, x2], x2
1 + x3

2 is not homogeneous in the standard grading, but it is
homogeneous of degree 6 under the N-grading with weights (3, 2).

d) A polynomial ring R = k[x1, . . . , xn] also admits a natural Nn-grading: the grading with
R(d1,...,dn) = k · xd11 · · ·xdnn . This is called the fine grading.

e) Let Γ ⊆ Nn be a subsemigroup of Nn. Then⊕
γ∈Γ

k · xγ ⊆ k[x] = k[x1, . . . , xn]

is an Nn-graded subring of k[x1, . . . , xn] with the fine grading. Moreover, every Nn-graded
subring of k[x1, . . . , xn] is of this form.

Macaulay2. Polynomial rings in Macaulay2 are graded with the standard grading by de-
fault. To define a different grading, we give Macaulay2 a list with the grading of each of the
variables:

i1 : R = ZZ/101[a,b,c,Degrees=>{{1,2},{2,1},{1,0}}];

We can check whether an element of R isHomogeneous, and the function degree applied to
an element of R returns the least upper bound of the degrees of its monomials:
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i2 : degree (a+b)
o2 = {2, 2}
o2 : List

i3 : isHomogeneous(a+b)
o3 = false

Remark 2.4. You may have seen the term homogeneous polynomial used to refer to a
polynomial f(x1, . . . , xn) ∈ k[x1, . . . , xn] that satisfies

f(λx1, . . . , λxn) = λdf(x1, . . . , xn)

for all λ ∈ k and some fixed d. This is equivalent to saying that all the terms in f have the
same total degree d, or that f is homogeneous with respect to the standard grading.

Similarly, a polynomial is quasi-homogeneous, or weighted homogeneous, if there exist
integers w1, . . . , wn such that the sum d = a1w1 + · · · + anwn is the same for all monomials
xa11 · · ·xann appearing in f . So f satisfies

f(λw1x1, . . . , λ
wnxn) = λdf(x1, . . . , xn),

for all λ ∈ k and f(xw1
1 , . . . , xwn

n ) is homogeneous (in the previous sense, so with respect to
the standard grading). This condition is equivalent to asking that f be homogeneous with
respect to some weighted grading on k[x1, . . . , xn].

Example 2.5. In k[x, y, z], the element x2 + y3 + z5 is not homogeneous in the standard
grading, but it is homogeneous (of degree 30) if we set deg(x) = 15, deg(y) = 10, and
deg(z) = 6. This tells us that x2 + y3 + z5 is quasi-homogeneous; it is homogeneous with
respect to the weights (15, 10, 6). Indeed,

(λ15x)2 + (λ10y)3 + (λ6z)5 = λ30(x2 + y3 + z5).

Definition 2.6. An ideal I in a graded ring R is called homogeneous if it can be generated
by homogeneous elements.

Lemma 2.7. Let I be an ideal in a graded ring R. The following are equivalent:

(1) I is homogeneous.

(2) For any element f ∈ R we have f ∈ I if and only if every homogeneous component of f
lies in I.

(3) I =
⊕

a∈T Ia, where Ia = I ∩Ra.

Proof. (1) ⇒ (2): Let f1, . . . , fn be homogeneous generators for I. If f ∈ I, we can write f
as

f = r1f1 + · · ·+ rnfn.

We can also write each ri as a sum of its components, say ri = [ri]di,1 + · · ·+ [ri]di,mi
. Then,

after substituting and collecting,

f =
∑
d

([r1]d−|f1|f1 + · · ·+ [rn]d−|fn|fn)
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expresses f as a sum of homogeneous elements of different degrees, so

fd = [r1]d−|f1|f1 + · · ·+ [rn]d−|fn|fn ∈ I.

(2)⇒ (1): Any element of I is a sum of its homogeneous components. Thus, in this case,
the set of homogeneous elements in I is a generating set for I.

(2) ⇒ (3): As above, I is generated by the collection of additive subgroups {Ia} in this
case; the sum is direct as there is no nontrivial Z-linear combination of elements of different
degrees.

(3) ⇒ (2): We can take generators for each abelian group I ∩ Ra, and the collection of
all of them is a generating set for I.

Example 2.8. Given an N-graded ring R, then R+ =
⊕

d>0Rd is a homogeneous ideal.

We now observe the following:

Lemma 2.9. Let R be an T -graded ring, and I be a homogeneous ideal. Then R/I has a
natural T -graded structure induced by the T -graded structure on R.

Proof. The ideal I decomposes as the direct sum of its graded components, so we can write

R/I =
⊕Ra

⊕Ia
∼= ⊕

Ra

Ia
.

It’s elementary to check that this direct sum decomposition satisfies the desired properties.

Example 2.10.

a) The ideal I = (w2x + wyz + z3, x2 + 3xy + 5xz + 7yz + 11z2) in R = k[w, x, y, z] is
homogeneous with respect to the standard grading on R, and thus the ring R/I admits
an N-grading with |w| = |x| = |y| = |z| = 1.

b) The ring R = k[x, y, z]/(x2 + y3 + z5) does not admit a grading with |x| = |y| = |z| = 1,
but by Example 2.5 it does admit a grading with |x| = 15, |y| = 10, |z| = 6.

Definition 2.11. Let R be a T -graded ring and M an R-module. An R-module M is
T -graded if there exists a direct sum decomposition of M as an abelian group indexed
by T :

M =
⊕
a∈T

Ma such that RaMb ⊆Ma+b

for all a, b ∈ T .

The notions of homogeneous element of a module and degree of a homogeneous element
of a module take the obvious meanings. A notable abuse of notation: we will often talk
about Z-graded modules over N-graded rings, and likewise.

We can also talk about graded homomorphisms.

Definition 2.12. Let R and S be T -graded rings with the same grading monoid T . A ring
homomorphism ϕ : R→ S is graded or degree-preserving if ϕ(Ra) ⊆ Sa for all a ∈ T .
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Note that our definition of ring homomorphism requires 1R 7→ 1S, and thus it does not
make sense to talk about graded ring homomorphisms of degree d 6= 0. But we can have
graded module homomorphisms of any degree.

Definition 2.13. Let M and N be T -graded modules over the T -graded ring R. A homo-
morphism of R-modules ϕ : M → N is graded of degree d if ϕ(Ma) ⊆ Na+d for all a ∈ T .
A graded homomorphism of degree 0 is also called degree-preserving.

Example 2.14.

a) Consider the ring map k[x, y, z] → k[s, t] given by x 7→ s2, y 7→ st, z 7→ t2. If k[s, t]
has the fine grading, meaning |s| = (1, 0) and |t| = (0, 1), then the given map is degree
preserving if and only if k[x, y, z] is graded by

|x| = (2, 0), |y| = (1, 1), |z| = (0, 2).

b) Let k be a field, and let R = k[x1, . . . , xn] be a polynomial ring with the standard grading.
Given c ∈ k = R0, the homomorphism of R-modules R → R given by f 7→ cf is degree
preserving. However, if instead we take g ∈ Rd for some d > 0, then the map

R // R

f � // gf

is not degree preserving, although it is a graded map of degree d. We can make this a
degree-preserving map if we shift the grading on R by defining R(−d) to be the R-module
R but with the Z-grading given by R(−d)t = Rt−d. With this grading, the component of
degree d of R(−d) is R(−d)d = R0 = k. Now the map

R(−d) // R

f � // gf

is degree preserving.

2.2 Finiteness conditions for graded algebras

We observed earlier an important relationship between algebra-finiteness and noetherianity
that followed from the Hilbert basis theorem: if R is noetherian, then any algebra-finite
extension of R is also noetherian. There isn’t a converse to this in general: there are lots of
algebras over fields k that are noetherian but not algebra-finite over k. However, for graded
rings, this converse relation holds.

Proposition 2.15. Let R be an N-graded ring, and let f1, . . . , fn ∈ R be homogeneous
elements of positive degree. Then f1, . . . , fn generate the ideal R+ :=

⊕
d>0Rd if and only if

f1, . . . , fn generate R as an R0-algebra.
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Proof. Suppose R = R0[f1, . . . , fn]. Any element r ∈ R+ can be written as a polynomial
expression r = P (f1, . . . , fn) for some P ∈ R0[x1, . . . , xn] with no constant term. Each
monomial of P is a multiple of some xi, and thus each term in r = P (f1, . . . , fn) is a
multiple of fi. Thus r ∈ Rf1 + · · ·+Rfn = (f1, . . . , fn).

To show that R+ = (f1, . . . , fn) implies R = R0[f1, . . . , fn], it suffices to show that any
homogeneous element r ∈ R can be written as a polynomial expression in f1, . . . , fn with
coefficients in R0. We will use induction on the degree of r, with degree 0 as a trivial base
case. For r homogeneous of positive degree, we must have r ∈ R+, so by assumption we can
write r = a1f1 + · · · + anfn. Moreover, since r and f1, . . . , fn are all homogeneous, we can
choose each coefficient ai to be homogeneous of degree |r|−|fi|. By the induction hypothesis,
each ai is a polynomial expression in f1, . . . , fn, so we are done.

This leads to the following characterization of noetherian N-graded rings:

Corollary 2.16. An N-graded ring R is noetherian if and only if R0 is noetherian and R is
algebra-finite over R0.

Proof. If R0 is noetherian and R is algebra-finite over R0, then R is noetherian by the
Hilbert Basis Theorem. On the other hand, if R is noetherian then any quotient of R is
also noetherian, by Lemma 1.54, and in particular R0

∼= R/R+ is noetherian. Moreover,
R+ is generated as an ideal by finitely many homogeneous elements by noetherianity; by
Proposition 2.15, we get a finite algebra generating set for R over R0.

There are many interesting examples of N-graded algebras with R0 = k; in that case,
R+ is the largest homogeneous ideal in R. In fact, R0 is the only maximal ideal of R that
is also homogeneous, so we can call it the homogeneous maximal ideal; it is sometimes
also called the irrelevant maximal ideal of R. This ideal plays a very important role: in
many ways, R and R+ behave similarly to a local ring R and its unique maximal ideal. We
will discuss this further when we learn about local rings.

2.3 Another application to invariant rings

If R is a graded ring, and G is a group acting on R by degree-preserving automorphisms,
then RG is a graded subring of R, meaning RG is graded with respect to the same grading
monoid. In particular, if G acts k-linearly on a polynomial ring over k, the invariant ring is
N-graded.

Using this perspective, we can now give a different proof of the finite generation of invari-
ant rings that works under different hypotheses. The proof we will discuss now is essentially
Hilbert’s proof. To do that, we need another notion that is very useful in commutative
algebra.

Definition 2.17. Let ϕ : R → S be a ring homomorphism. We say that R is a direct
summand of S if the map ϕ splits as a map of R-modules, meaning there is an R-module
homomorphism

R ϕ
// S

ρ

��
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such that ρϕ is the identity on R.

First, observe that the condition on ρ implies that ϕ must be injective, so we can assume
that R ⊆ S, perhaps after renaming some elements. The condition on ρ is that ρ|R is the
identity and ρ(rs) = rρ(s) for all r ∈ R and s ∈ S. We call the map ρ the splitting of
the inclusion R ⊆ S. Note that given any R-linear map ρ : S → R, if ρ(1) = 1 then ρ is a
splitting: indeed, ρ(r) = ρ(r · 1) = rρ(1) = r for all r ∈ R.

Remark 2.18. The subring R of S is a direct summand of S if and only if there exists an
R-submodule of S such that S = R ⊕M . In the language above, M = ker ρ. Conversely,
given a direct sum decomposition S = R⊕M , the quotient map onto the first component is
a splitting.

Being a direct summand is a really nice condition, since many good properties of S pass
onto its direct summands.

Notation 2.19. Let ϕ : R → S be a ring homomorphism. Given an ideal I in S, we write
I ∩R for the contraction of R back into R, meaning the preimage of I via ϕ. In particular,
if R ⊆ S is a ring extension, then I ∩ R denotes the preimage of I via the inclusion map
R ⊆ S. Given a ring map R→ S, and an ideal I in R, the expansion of I in S is the ideal
of S generated by the image of I via the given ring map; we naturally denote this by IS.

Lemma 2.20. Let R be a direct summand of S. Then, for any ideal I ⊆ R, we have
IS ∩R = I.

Proof. Let π be the corresponding splitting. Clearly, I ⊆ IS ∩R. Conversely, if r ∈ IS ∩R,
we can write r = s1f1 + · · ·+ stft for some fi ∈ I, si ∈ S. Applying π, we have

r = π(r) = π

(
t∑
i=1

sifi

)
=

t∑
i=1

π (sifi) =
t∑
i=1

π (si) fi ∈ I.

Proposition 2.21. Let R be a direct summand of S. If S is noetherian, then so is R.

Proof. Let
I1 ⊆ I2 ⊆ I3 ⊆ · · ·

be a chain of ideals in R. The chain of ideals in S

I1S ⊆ I2S ⊆ I3S ⊆ · · ·

stabilizes, so there exist J , N such that InR = J for n > N . Contracting to R, we get that
In = InS ∩R = J ∩R for n > N , so the original chain also stabilizes.

Example 2.22. Notice in general a subring of a noetherian ring does not have to be noethe-
rian. For example, if k is a field, S = k[x, y] is noetherian by Hilbert’s Basis Theorem, but
we claim that the subring

R = k[xy, xy2, xy3, . . .]
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of S = k[x, y] is not noetherian. Indeed,

(xy) ⊆ (xy, xy2) ⊆ (xy, xy2, xy3) ⊆ · · ·

is an ascending chain of ideals of R that does not stabilize. Notice that if we considered the
same chain of ideals in S, then it does stabilize, and in fact it is the constant chain (xy).

Proposition 2.23. Let k be a field, and R be a polynomial ring over k. Let G be a finite
group acting k-linearly on R. Assume that the characteristic of k does not divide |G|. Then
RG is a direct summand of R.

Remark 2.24. The condition that the characteristic of k does not divide the order of G is
trivially satisfied if k has characteristic zero.

Proof. We consider the map ρ : R→ RG given by

ρ(r) =
1

|G|
∑
g∈G

g · r.

First, note that the image of this map lies in RG, since acting by g just permutes the elements
in the sum, so the sum itself remains the same. We claim that this map ρ is a splitting for
the inclusion RG ⊆ R. To see that, let s ∈ RG and r ∈ R. We have

ρ(sr) =
1

|G|
∑
g∈G

g · (sr) =
1

|G|
∑
g∈G

(g · s)(g · r) =
1

|G|
∑
g∈G

s(g · r) = s
1

|G|
∑
g∈G

(g · r) = sρ(r),

so ρ is RG-linear, and for s ∈ RG,

ρ(s) =
1

|G|
∑
g∈G

g · s = s.

Theorem 2.25 (Hilbert’s finiteness theorem for invariants). Let k be a field, and R be a
polynomial ring over k. Let G be a group acting k-linearly on R. Assume that G is finite
and that the characteristic of k does not divide |G|, or more generally, that RG is a direct
summand of R. Then RG is a finitely generated k-algebra.

Proof. Since G acts linearly on R, RG is an N-graded subring of R with R0 = k. Since RG

is a direct summand of R, RG is noetherian by Proposition 2.21. By our characterization of
noetherian graded rings in Corollary 2.16, RG is finitely generated over R0 = k.

One important thing about this proof is that it applies to many infinite groups. In
particular, for any linearly reductive group, including GLn(C), SLn(C), and (C×)n, we can
construct a splitting map ρ.



Chapter 3

Primes

3.1 Prime and maximal ideals

As we will discover through the rest of the course, prime ideals play a very prominent role
in commutative algebra.

Definition 3.1. An ideal P 6= R is prime if ab ∈ P implies a ∈ P or b ∈ P .

Exercise 8. An ideal P in a ring R is prime if and only if R/P is a domain. In particular,
(0) is a prime ideal if and only if R is a domain.

Example 3.2. The prime ideals in Z are those of the form (p) for p a prime integer, and (0).

Example 3.3. When k is a field, prime ideals in k[x] are easy to describe: k[x] is a principal
ideal domain, and (f) 6= 0 is prime if and only if f is an irreducible polynomial. Moreover,
(0) is also a prime ideal, since k[x] is a domain.

The prime ideals in k[x1, . . . , xd] are, however, not so easy to describe. We will see many
examples throughout the course; here are some.

Example 3.4. Let k be a field. The ideal P = (x3 − y2) in R = k[x, y] is prime: one can
show that R/P ∼= k[t2, t3] ⊆ k[t], which is a domain.

Example 3.5. The k-algebra R = k[t3, t4, t5] ⊆ k[t] is a domain, so its defining ideal P in
k[x, y, z] is prime. This is the kernel of the presentation of R sending x, y, z to each of our 3
algebra generators, which we can compute with Macaulay2:

i1 : k = QQ

o1 = QQ

o1 : Ring

i2 : f = map(k[t],k[x,y,z],{t^3,t^4,t^5})
3 4 5

o2 = map (QQ[t], QQ[x..z], {t , t , t })

39



40

o2 : RingMap QQ[t] <--- QQ[x..z]

i3 : P = ker f
2 2 2 3

o3 = ideal (y - x*z, x y - z , x - y*z)

o3 : Ideal of QQ[x..z]

Definition 3.6 (Maximal ideal). An ideal m in R is maximal if for any ideal I

I ⊇ m =⇒ I = m or I = R.

Exercise 9. An ideal m in R is maximal if and only if R/m is a field.

Given a maximal ideal m in R, the residue field of m is the field R/m. A field k is a
residue field of R if k ∼= R/m for some maximal ideal m.

Remark 3.7. A ring may have many different residue fields. For example, the residue fields
of Z are all the finite fields with a prime numbers of elements, Fp ∼= Z/p.
Exercise 10. Every maximal ideal is prime.

However, not every prime ideal is maximal. For example, in Z, (0) is a prime ideal that
is not maximal.

Theorem 3.8. Given a ring R, every proper ideal I 6= R is contained in some maximal
ideal.

Fun fact: this is actually equivalent to the Axiom of Choice. We will prove it (but not
its equivalence to the Axiom of Choice!) using Zorn’s Lemma, another equivalent version of
the Axiom of Choice. Zorn’s Lemma is a statement about partially ordered sets. Given a
partially ordered set S, a chain in S is a totally ordered subset of S.

Theorem 3.9 (Zorn’s Lemma). Let S be a nonempty partially ordered set S such that every
chain in S has an upper bound in S. Then S contains at least one maximal element.

So let’s prove that every ideal is contained in some maximal ideal.

Proof. Fix a ring R and a proper ideal I. Let S be the set of all proper ideals J in R such
that J ⊇ I, which is partially ordered with the inclusion order ⊆. We claim that Zorn’s
Lemma applies to S. First, S is nonempty, since it contains I. Now consider a chain of
proper ideals in R, say {Ji}i, all of which contain I. Notice that J :=

⋃
i Ji is an ideal as

well (exercise!), and moreover J 6= R since 1 /∈ Ji for all i.1 Since each Ji ⊇ I, we conclude
that J ⊇ I. Thus we have checked that J ∈ S. Now this ideal J ∈ S is an upper bound for
our chain {Ji}i, and thus Zorn’s Lemma applies to S. We conclude that S has a maximal
element.

There is a subtle point missing: we have shown that there is a maximal element M in S
containing I, but we have yet to show that this maximal element is a maximal ideal of R.
Finally, suppose that L is an ideal in R with L ⊇ M . Since M contains J , so does L. If
L ∈ S, by the maximality of M we must have L = M . Since L already satisfies L ⊇ J , if
L /∈ S then we must have L = R.

1Note that unions of ideals are not ideals in general, but a union of totally ordered ideals is an ideal.
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3.2 The spectrum of a ring

Definition 3.10. Let R be a ring. The prime spectrum of R, denoted Spec(R), is the set
of prime ideals of R.

Definition 3.11. For a ring R and an ideal I, we set

V (I) := {P ∈ Spec(R) | P ⊇ I}.

Proposition 3.12. Let R be a ring, and Iλ, J be ideals, not necessarily proper.

(0) V (R) = ∅ and V (0) = Spec(R).

(1) If I ⊆ J , then V (J) ⊆ V (I).

(2) V (I) ∪ V (J) = V (I ∩ J) = V (IJ).

(3)
⋂
λ V (Iλ) = V (

∑
λ Iλ).

Proof. Both (0) and (1) are straightforward, so we just prove (2).
To see V (I) ∪ V (J) ⊆ V (I ∩ J), just observe that if P ⊇ I or P ⊇ J , then P ⊇ I ∩ J .

Since IJ ⊆ I ∩ J , we have V (I ∩ J) ⊆ V (IJ). To show V (IJ) ⊆ V (I) ∪ V (J), if P is a
prime and P /∈ V (I) ∪ V (J), then P 6⊇ I, P 6⊇ J . Thus we can find f ∈ I, and g ∈ J such
that f, g /∈ P . Since P is prime, fg /∈ P , while also fg ∈ IJ . Therefore, P + IJ .

To show (3), since ideals are closed for sums, if P ⊇ Iλ for all λ, then P ⊇
∑

λ Iλ.
Moreover, if P ⊇

∑
λ Iλ, then in particular P ⊇ Iλ.

It follows that Spec(R) obtains a topology by setting the closed sets to be all sets of the
form V (I); this is the Zariski topology on Spec(R).

Exercise 11. Note that Spec(R) is also a poset under inclusion. Show that the poset
structure of Spec(R) can be recovered from the topology as follows:

P ⊆ Q ⇔ Q ∈ {P}.

Example 3.13. The spectrum of Z is, as a poset:

(2) (3) (5) (7) (11) · · ·

(0)

The closed sets are of the form V ((n)), which are the whole space when n = 0, the empty
set when n = 1, and any finite union of things in the top row. Any closed set that contains
(0) must be all of Spec(Z).

Definition 3.14. The radical of an ideal I in a ring R is the ideal
√
I := {f ∈ R | fn ∈ I for some n}.

An ideal is a radical ideal if I =
√
I.
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Remark 3.15. To see that
√
I is an ideal, note that if fm, gn ∈ I, then

(f + g)m+n−1 =
m+n−1∑
i=0

(
m+ n− 1

i

)
f igm+n−1−i

= fm
(
fn−1 +

(
m+ n− 1

1

)
fn−2g + · · ·+

(
m+ n− 1

n− 1

)
gn−1

)
+ gn

((
m+ n− 1

n

)
fm−1 +

(
m+ n− 1

n+ 1

)
fm−2g + · · ·+ gm−1

)
∈ I,

and (rf)m = rmfm ∈ I.

Definition 3.16. A ring R is reduced if it has no nonzero nilpotents.

Remark 3.17. An ideal I in R is radical if and only if R/I is reduced.

Lemma 3.18. Let R be a ring. For any ideal I, V (I) = V (
√
I).

Proof. The containment I ⊆
√
I is immediate from the definition of radical, and thus by

Proposition 3.12 we have V (I) ⊇ V (
√
I). Now let P ⊇ I be a prime ideal, and let f ∈

√
I.

By definition, there exists some n such that fn ∈ I ⊆ P , but since P is prime, we conclude
that f ∈ P . Therefore, V (I) ⊆ V (

√
I), and we are done.

Lemma 3.19. Let R
ϕ−→ S be a ring homomorphism and P ⊂ S be a prime ideal. Then

P ∩R is also prime.

Proof. Let P be a prime ideal in S. Given elements f, g ∈ R such that fg ∈ P ∩ R, then
ϕ(f)ϕ(g) = ϕ(fg) ∈ P , and since P is prime, we conclude that ϕ(f) ∈ P or ϕ(g) ∈ P .
Therefore, f ∈ P ∩R or g ∈ P ∩R.

Definition 3.20 (Induced map on Spec). Each ring homomorphism ϕ : R → S induces a
map on spectra ϕ∗ : Spec(S)→ Spec(R) given by ϕ∗(P ) = ϕ−1(P ) = P ∩R.

The key point is that the preimage of a prime ideal is also prime, which we showed in
Lemma 3.19.

Remark 3.21. We observe that this is not only an order-preserving map, but also it is
continuous: if U ⊆ Spec(R) is open, we have U = Spec(R) \ V (I) for some ideal I; then for
a prime Q of S,

Q ∈ (ϕ∗)−1(U) ⇐⇒ Q ∩R 6⊇ I ⇐⇒ Q 6⊇ IS ⇐⇒ Q /∈ V (IS).

So (ϕ∗)−1(U) is the complement of V (IS), and thus open.

Definition 3.22. Let I be an ideal in a ring R. A prime P is a minimal prime of I if P
is minimal in V (I). A minimal prime of R is a minimal element in Spec(R).

Lemma 3.23. Let R be a ring, and I an ideal. Every prime P that contains I contains a
minimal prime of I.
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Proof. Fix an ideal I and a prime P ⊇ I, and consider the set

S = {Q ∈ V (I) | P ⊇ Q},

which is partially ordered with ⊇. On the one hand, P ∈ S, so S is nonempty. On the other
hand, given any chain {Qi}i in S, Q :=

⋂
iQi is a prime ideal in R (exercise!). Moreover, Q

contains I, since every Qi contain I, and Q is contained in P , since every Qi ⊆ P . Therefore,
Q ∈ S, and Zorn’s Lemma applies to S. By Zorn’s lemma, S contains a maximal element
for ⊇, say Q.

Notice that Q is equivalently a minimal element for ⊆. Now if Q′ is a prime ideal with
I ⊆ Q′ ⊆ Q, then Q′ ⊆ Q ⊆ P , and thus Q′ ∈ S. Therefore, we must have Q′ = Q, by
maximality of Q with respect to ⊇. We conclude that Q is a minimal prime of I, and by
definition Q is contained in P .

Definition 3.24. A subset W ⊆ R of a ring R is multiplicatively closed if 1 ∈ W and
a, b ∈ W ⇒ ab ∈ W .

Lemma 3.25. Let R be a ring, I an ideal, and W a multiplicatively closed subset. If
W ∩ I = ∅, then there is a prime ideal P with P ⊇ I and P ∩W = ∅.

Proof. Consider the family of ideals F := {J | J ⊇ I, J ∩W = ∅} ordered with inclusion.
This is nonempty, since it contains I, and any chain J1 ⊆ J2 ⊆ · · · has an upper bound
∪iJi. Therefore, F has some maximal element A by a basic application of Zorn’s Lemma.
We claim A is prime. Suppose f, g /∈ A. By maximality, A + (f) and A + (g) both have
nonempty intersection with W , so there exist r1f + a1, r2g + a2 ∈ W , with a1, a2 ∈ A. If
fg ∈ A, then

(r1f + a1)
∈W

(r2g + a2)
∈W

= r1r2fg + r1fa2
∈A

+ r2ga1
∈A

+ a1a2
∈A
∈ W ∩ A,

a contradiction.

Theorem 3.26 (Spectrum analogue of strong Nullstellensatz). Let R be a ring, and I be an
ideal. For f ∈ R,

V (I) ⊆ V (f)⇐⇒ f ∈
√
I.

Moreover √
I =

⋂
P∈V (I)

P =
⋂

P∈Min(I)

P.

Proof. First to justify the equivalence of the two statements we observe:

V (I) ⊆ V (f)⇐⇒ f ∈ P for all P ∈ V (I)⇐⇒ f ∈
⋂

P∈V (I)

P.

Now we will show that
⋂

P∈V (I)

P =
√
I:

(⊇): It suffices to show that P ⊇ I implies P ⊇
√
I, and indeed

f ∈
√
I =⇒ fn ∈ I ⊆ P =⇒ f ∈ P.
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(⊆): If f /∈
√
I, consider the multiplicatively closed set W = {1, f, f 2, f 3, . . .}. We have

W ∩I = ∅ by hypothesis. By Lemma 3.25, there is a prime P in V (I) that does not intersect
W , and hence P does not contain f .

Finally, Min(I) ⊆ V (I), and since by Lemma 3.23 every prime in V (I) contains a minimal
prime of I, we conclude that ⋂

P∈V (I)

P =
⋂

P∈Min(I)

P.

Example 3.27. Let k be a field, R = k[x], and I = (x2). On the one hand, it is immediate
from the definition that x ∈

√
I, and thus (x) ⊆

√
I. On the other hand, (x) is a prime ideal

that contains I, and thus by Theorem 3.26 we must have
√
I = (x).

Corollary 3.28. Let R a ring. There is an order-reversing bijection

{closed subsets of Spec(R)} oo // {radical ideals I ⊆ R}

In particular, for two ideals I and J , we have V (I) = V (J) if and only if
√
I =
√
J .

Proof. The closed sets of Spec(R) are precisely the sets of the form V (I) for some ideal I.
By Lemma 3.18, V (I) = V (

√
I), so the closed sets of Spec(R) are given by V (I) where I

ranges over all radical ideals. We showed in Proposition 3.12 that the map

V : {radical ideals I ⊆ R} −→ {closed subsets of Spec(R)}

is order-reversing. Finally, suppose that I and J are ideals such that V (I) = V (J). By
Theorem 3.26, √

I =
⋂

P∈V (I)

P =
⋂

P∈V (J)

P =
√
J.

Conversely, suppose that
√
I =
√
J . Given a prime P ∈ V (I), we also have P ∈ V (

√
I), by

Lemma 3.18, and thus
P ⊇

√
I =
√
J ⊇ J,

so P ∈ V (J). Since the same argument applies to show that V (J) ⊇ V (I), we conclude that
V (I) = V (J).

Exercise 12. Let I and J be ideals in a ring R.

a) Show that
√√

I =
√
I.

b) Show that if I ⊆ J , then
√
I ⊆
√
J .

c) Show that
√
I ∩ J =

√
I ∩
√
J .

d) Show that
√
In =

√
I for all n > 1.

e) Show that if P is a prime ideal, then
√
P n = P for all n > 1.
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3.3 Prime Avoidance

We will now discuss an important lemma known as Prime Avoidance. This is an elementary
fact, but it is very helpful. Prime Avoidance says that if an ideal I is not contained in any
of the primes P1, . . . , Pn, then I cannot be contained in their union. Set-theoretically this is
possible, of course; but if the ideals P1, . . . , Pn are all prime, then it is actually not possible
for I ⊆ P1 ∪ · · · ∪ Pn unless I is contained in one of the Pi. In fact, for this to work we can
even allow two of the Pi to be just any ideals, as long as the remaining Pi are prime.

Lemma 3.29 (Prime avoidance). Let R be a ring, I1, . . . , In, J be ideals, and suppose that
Ii is prime for i > 2. If J 6⊆ Ii for all i, then J 6⊆

⋃
i Ii. Equivalently, if J ⊆

⋃
i Ii, then

J ⊆ Ii for some i.
Moreover, if R is N-graded, and all of the ideals are homogeneous, all Ii are prime, and

J 6⊆ Ii for all i, then there is a homogeneous element in J that is not in
⋃
i Ii.

Proof. We proceed by induction on n. If n = 1, there is nothing to show. When n = 2, we
have two ideals I1 and I2 and an ideal J such that J * I1 and J * I2, and we want to show
that J * I1 ∪ I2. By assumption, there exist elements a1, a2 ∈ J with a1 /∈ I1 and a2 /∈ I2. If
a2 /∈ I1 or a1 /∈ I2, then we have an element that is not in I1 ∪ I2, and we are done. On the
other hand, if a2 ∈ I1 and a1 ∈ I2, then consider c = a1 + a2 ∈ J . Since a1 ∈ I1 but a2 /∈ I1,
then c /∈ I1. Similarly, c /∈ I2. Therefore, c /∈ I1 ∪ I2.

Now suppose that the statement holds for some n− 1 > 2, and consider ideals I1, . . . , In
with Ii prime for all i > 3 such that J * Ii for any i. By induction hypothesis, for each i we
have

J *
⋃
j 6=i

Ij,

so we can find elements ai such that

ai /∈
⋃
j 6=i

Ij and ai ∈ J.

If some ai /∈ Ii, we are done, so let’s assume that ai ∈ Ii for each i. Consider

a := an + a1 · · · an−1 ∈ J.

Notice that a1 · · · an−1 = ai(a1 · · · âi · · · an−1) ∈ Ii. If a ∈ Ii for i < n, then we also have
an ∈ Ii, a contradiction. If a ∈ In, then we also have a1 · · · an−1 = a−an ∈ In, since an ∈ In.
Since n > 2, our assumption is that In is prime, so one of a1, . . . , an−1 ∈ In, which is a
contradiction. So a /∈ Ii for all i, and thus a is the element we were searching for.

If all Ii are homogeneous and prime, then we proceed as above but replacing an and
a1, . . . , an−1 with suitable powers so that an + a1 · · · an−1 is homogeneous. For example, we
could take

a := adeg(a1)+···+deg(an−1)
n + (a1 · · · an−1)deg(an) .

The primeness assumption guarantees that noncontainments in ideals is preserved.

We will also need a slightly stronger version of Prime Avoidance.
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Theorem 3.30. Let R be a ring, P1, . . . , Pn prime ideals, x ∈ R and I be an ideal in R. If
(x) + I 6⊆ Pi for each i, then there exists y ∈ J such that

x+ y /∈
n⋃
i=1

Pi.

Proof. We proceed by induction on n. When n = 1, if every element of the form x+ y with
y ∈ R is in P = P1, then multiplying by r ∈ R we conclude that every rx+ y ∈ P , meaning
(x) + I ⊆ P .

Now suppose n > 1 and that we have shown the statement for n− 1 primes. If Pi ⊆ Pj
for some i 6= j, then we might as well exclude Pi from our list of primes, and the statement
follows by induction. So assume that all our primes Pi are incomparable.

If x /∈ Pi for all i, we are done, since we can take x+ 0 for the element we are searching
for. So suppose x is in some Pi, which we assume without loss of generality to be Pn. Our
induction hypothesis says that we can find y ∈ I such that x + y /∈ P1 ∪ · · · ∪ Pn−1. If
x + y /∈ Pn, we are done, so suppose x + y ∈ Pn. Since we assumed x ∈ Pn, we must have
I 6⊆ Pn, or else we would have had (x) + I ⊆ Pn. Now Pn is a prime ideal that does not
contain P1, . . . , Pn−1, nor I, so

P 6⊇ IP1 · · ·Pn−1.

Choose z ∈ IP1 · · ·Pn−1 not in Pn. Then x + y + z /∈ Pn, since z /∈ Pn but x + y ∈ Pn.
Moreover, for all i < n we have x+ y + z /∈ Pi, since z ∈ Pi and x+ y /∈ Pi.



Chapter 4

Affine varieties

Colloquially, we often identify systems of equations with their solution sets. We will make this
correspondence more precise for systems of polynomial equations, and develop the beginning
of a rich dictionary between algebraic and geometric objects.

Question 4.1. Let k be a field. To what extent is a system of polynomial equations
f1 = 0

...
ft = 0

with f1, . . . , ft ∈ k[x1, . . . , xd] determined by its solution set?

Consider one polynomial equation in one variable. Over R,Q, or other fields that are not
algebraically closed, there are many polynomials with an empty solution set; for example,
z2 + 1 has an empty solution set over R. On the other hand, over C or any algebraically
closed field, if a1, . . . , ad are the solutions to f(z) = 0, then we can write f in the form
f(z) = α(z − a1)n1 · · · (z − ad)nd , so f is completely determined up to scalar multiple and
repeated factors. If we insist that f have no repeated factors, then (f) is uniquely determined.

More generally, given any system of polynomial equations
f1 = 0

...
ft = 0

where fi ∈ k[z] for some field k, notice that that z = a is a solution to the system if and
only if it is a solution for any polynomial g ∈ (f1, . . . , ft). But since k[z] is a PID, we have
(f1, . . . , ft) = (f), where f is a greatest common divisor of f1, . . . , ft. Therefore, z = a is a
solution to the system if and only if f(a) = 0.

4.1 Varieties

Definition 4.2. Given a field k, the affine d-space over k, denoted Ad
k, is the set

Ad
k := {(a1, . . . , ad) | ai ∈ k}.

47
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A variety in Ad
k is the set of common solutions of some (possibly infinite) collection of

polynomial equations.

Definition 4.3. For a subset T of k[x1, . . . , xd], we define Z(T ) ⊆ Ad
k to be the set of

common zeros or the zero set of the polynomials (equations) in T :

Z(T ) := {(a1, . . . , ad) ∈ Ad
k | f(a1, . . . , ad) = 0 for all f ∈ T}.

A subset of Ad
k of the form Z(T ) for some subset T is called an algebraic subset of Ad

k, or
an affine algebraic variety. A variety is irreducible if it cannot be written as the union
of two proper subvarieties.

Some authors use the word variety to refer only to irreducible algebraic sets. Note also
that the definitions given here are only completely standard when k is algebraically closed.

Remark 4.4. Note that if L ⊇ k are both fields, any polynomial f ∈ k[x1, . . . , xn] is also
an element of L[x1, . . . , xn], and we can evaluate it at any point in An

L. Thus, we may write
Zk(T ) or ZL(T ) to distinguish between the zero sets over different fields.

Example 4.5. Here are some simple examples of algebraic varieties:

1) For k = R and n = 2, Z(y2 − x2(x + 1)) is a “nodal curve” in A2
R, the real plane. Note

that we have written x for x1 and y for x2 here, which is a common choice.

2) For k = R and n = 3, Z(z − x2 − y2) is a paraboloid in A3
R, real three space.

3) For k = R and n = 3, Z(z − x2 − y2, 3x− 2y + 7z − 7) is a circle in A3
R.
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4) For k = R and n = 3, Z(xy, xz) is a line and a plane that cross transversely.

5) Over an arbitrary field k, a linear subspace of An
k = kn is a subvariety: such a subset is

defined by some linear equations.

6) For k = R, ZR(x2 + y2 + 1) = ∅. Note that ZC(x2 + y2 + 1) 6= ∅, since it contains (i, 0).

7) For k = R, ZR(x2 +y2) = {(0, 0)}. On the other hand, ZC(x2 +y2) is a union of two lines
in C2 (or two planes, in the real sense), given by the equations x+ iy = 0 and x− iy = 0.

8) The subset A2
k \ {(0, 0)} is not an algebraic subset of A2

k if k is infinite. Why?

9) The graph of the sine function is not an algebraic subset of A2
R.

10) For k = R or C, the set
X = {(t, t2, t3) | t ∈ k}

is an algebraic variety, though it is not clear from this description that that is the case.
In fact, X = Z(y − x2, z − x3). To see the containment (⊆), for (t, t2, t3) ∈ X, we have
t2 − t2 = 0 and t3 − t3 = 0. For the containment (⊇), let (a, b, c) ∈ Z(y − x2, z − x3),
so b = a2 and c = a3. Setting t = a, we get that (a, b, c) = (t, t2, t3) ∈ X. The same
argument works over C.

11) For k = R or C, we claim that the set

X := {(t3, t4, t5) | t ∈ R}

is an algebraic variety. Consider Y = Z(y3 − x4, z3 − x5). It is easy to see that X ⊆ Y .

Over R, for (a, b, c) ∈ Y , take t = 3
√
a; then a = t3, b3 = a4 means b = 3

√
a

4
, so b = t4, and

similarly c = t5, so X = Y . We used uniqueness of cube roots in this argument though, so
we need to reconsider over C. Indeed, if ω is a cube root of unity, then (1, 1, ω) ∈ Y \X, so
we need to do better. Let’s try Z = Z(y3−x4, z3−x5, z4− y5). Again, X ⊆ Z. Say that
(a, b, c) ∈ A3

C are in Z, and let s be a cube root of a. Then b3 = a4 = (s4)3 implies that
b = ωs4 for some cube root of unity ω′ (maybe 1, maybe not). Similarly c3 = a4 = (s5)3

implies that c = ω′′s5 for some cube root of unity ω′′ (maybe 1, maybe ω′, maybe not).
So at least (a, b, c) = (s3, ω′s4, ω′′s5). Let t = ω′s. Then (s3, ω′s4, ω′′s5) = (t3, t4, ωs5),
where ω = (ω′)2ω′′ is again some cube root of unity. The equation b5 = c4 shows
that t20 = ω5t20. If t 6= 0, this shows ω = 1, so (a, b, c) = (t3, t4, t5); if t = 0, then
(a, b, c) = (0, 0, 0) = (03, 04, 05). Thus, X = Z.

12) For any field k and elements a1, . . . , ad ∈ k, we have

Z(x1 − a1, . . . , xd − ad) = {(a1, . . . , ad)}.

So, all one element subsets of Ad
k are algebraic subsets.
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13) Here is an example from linear algebra. Fix a field k and consider the set of pairs (A, v)
of 2× 2 matrices and 2× 1 vectors over k. We can again identify this with A6

k; let’s call
our variables x11, x12, x21, x22, y1, y2, where we are thinking of

A =

[
x11 x12

x21 x22

]
and v =

[
y1

y2

]
.

The set X := {(A, v) | Av = 0} is a subvariety of A6
k:

X = Z(x11y1 + x12y2, x21y1 + x22y2).

14) Let us take another linear algebra example. We can identify the set of 2 × 3 matrices
over a field k with A6

k. To make this line up a little more naturally, label our variables as
x11, x12, x13, x21, x22, x23. We claim that the set X of matrices of rank strictly less than 2
is a subvariety of A6

k. To see this, we need to find equations.

For a 2× 3 matrix A to have rank strictly less than 2, it is necessary and sufficient that
each 2 × 2 submatrix have rank strictly less than 2, which is equivalent to each of the
2× 2 minors (subdeterminants) of the matrix to be zero. Thus, if we use variables[

x11 x12 x13

x21 x22 x23

]
,

our variety is

X = Z (x11x22 − x12x21, x11x23 − x13x21, x12x23 − x13x22) .

Proposition 4.6. Let k be a field and R = k[x1, . . . , xn]. Let S, T ⊆ R be arbitrary subsets.

(1) If S ⊆ T , then Z(S) ⊇ Z(T ).

(2) If I = (S) is the ideal generated by S, then Z(S) = Z(I).

Proof. First, note that imposing more equations can only lead to a smaller the solution set,
which gives (1). For (2), we have Z(I) ⊆ Z(S) by (1). On the other hand, if f1, . . . , fm ∈ S
and r1, . . . , rm ∈ R, and (a1, . . . , an) ∈ Z(S), then fi(a1, . . . , an) = 0 for all i. Therefore,

(
∑
i

rifi)(a1, . . . , an) =
∑
i

ri(a1, . . . , an)fi(a1, . . . , an) = 0,

so (a1, . . . , an) ∈ Z(
∑

i rifi). Thus, (a1, . . . , an) ∈ Z(I). That is, Z(S) ⊆ Z(I).

Given Proposition 4.6, it is sufficient to consider Z(I) with I varying over all ideals in
R = k[x1, . . . , xn]. In other words, we will talk about the solution set of an ideal, rather than
of an arbitrary set.

Notice that different ideals can determine the same variety.

Example 4.7. Let k be a field and R = k[x]. The varieties Z(x) and Z(x2) are both the
singleton given by the origin {0} of A1

k, even though the ideals (x) and (x2) are distinct.
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Proposition 4.8. Let k be a field and R = k[x1, . . . , xn]. Let I, Iλ, J ⊆ R be ideals in R.

(1) Z(R) = Z(1) = ∅ and Z(0) = An
k .

(2)
⋂
λ∈ΛZ(Iλ) = Z(

∑
λ∈Λ

Iλ).

(3) Z (I ∩ J) = Z(IJ) = Z(I) ∪ Z(J).

Proof. (1) is clear, since 1 is never equal to zero and 0 is always zero.
Let’s now show (2). Given sets Sλ ⊆ T , a point is a solution to all of the equations in

each set Sλ if and only if it is a solution of each set of equations Sλ. Therefore,

Z(
⋃
λ∈Λ

Sλ) =
⋂
λ∈Λ

Z(Sλ).

Given ideals Iλ,
∑

λ∈Λ Iλ is the ideal generated by
⋃
λ∈Λ Iλ, and thus

Z(
∑
λ∈Λ

Iλ) = Z(
⋃
λ∈Λ

Iλ) =
⋂
λ∈Λ

Z(Iλ).

To show (3), first consider subsets S, T ⊆ R. We claim that

Z(S) ∪ Z(T ) ⊆ Z({fg | f ∈ S, g ∈ T}).

Indeed, f(a1, . . . , an) = 0 for all f ∈ S implies f(a1, . . . , an)g(a1, . . . , an) = 0 for all f ∈ S
and all g ∈ T . On the other hand, if (a1, . . . , an) /∈ Z(S)∪Z(T ), then there is some f ∈ S and
some g ∈ T with f(a1, . . . , an) 6= 0 and g(a1, . . . , an) 6= 0, so f(a1, . . . , an)g(a1, . . . , an) 6= 0.
Therefore,

Z(S) ∪ Z(T ) ⊆ Z({fg | f ∈ S, g ∈ T}).

Now given ideals I and J , since IJ ⊆ I ∩ J ⊆ I and I ∩ J ⊆ J , by (1) we get

Z(I) ∪ Z(J) ⊆ Z(I ∩ J) ⊆ Z(IJ).

On the other hand, by (2) and (4) we get

Z(IJ) ⊆ Z({fg | f ∈ I, g ∈ J}) = Z(I) ∪ Z(J),

so the equalities hold throughout.

Proposition 4.8 allows us to define a topology on An
k .

Definition 4.9. Let k be a field. The collection of subvarieties X ⊆ An
k is the collection

of closed subsets in a topology on An
k . This is called the Zariski topology on An

k . Any
subvariety of An

k obtains a Zariski topology as the subspace topology from An
k .

This topology is not very similar to the Euclidean topology on a manifold; it is much
coarser. In fact, this topology is typically non-Hausdorff.
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Example 4.10. Let k be an infinite field. The closed subsets in the Zariski topology on
A1
k are just the finite subsets, along with the whole space. Note that this topology is not

Hausdorff; quite on the contrary, any two nonempty open sets have infinite intersection!

We can also consider the equations that a subset of affine space satisfies.

Definition 4.11. Given any subset X of Ad
k for a field k, define

I(X) = {g(x1, . . . , xd) ∈ k[x1, . . . , xd] | g(a1, . . . , ad) = 0 for all (a1, . . . , ad) ∈ X}.

Exercise 13. I(X) is an ideal in k[x1, . . . , xd] for any X ⊆ Ad
k.

Example 4.12. For any field k, we have I((a1, . . . , ad)) = (x1 − a1, . . . , xd − ad).

Remark 4.13. For a subset X ⊆ An
K and a subset S ⊆ K[x1, . . . , xn], we have

X ⊆ Z(S)⇐⇒ each s ∈ S vanishes at each x ∈ X ⇐⇒ S ⊆ I(X).

Theorem 4.14. Let k be a field, and X,Xλ, Y be subsets of An
k .

(1) I(∅) = R and, if k is infinite, I(An
k) = 0.

(2) If X ⊆ Y , then I(X) ⊇ I(Y ).

(3) I(X) is a radical ideal.

Proof. For (1), it is clear that I(∅) = R. Now assume k is infinite. We show by induction
on n that any nonzero polynomial in k[x1, . . . , xn] is nonzero at some point in An

k . The case
n = 1 is standard: a polynomial in k[x] of degree d can have at most d roots — in particular,
it cannot have infinitely many roots. Let n > 2 and let f(x1, . . . , xn) ∈ k[x1, . . . , xn] be a
nonzero polynomial. If f is a nonzero constant, it is nonzero at any point. Otherwise, we
can assume that f nontrivally involves some variable, say xn. Write

f(x1, . . . , xn) = fd(x1, . . . , xn−1)xdn + · · ·+ f0(x1, . . . , xn−1).

If f is identically zero, then for every (a1, . . . , an−1) ∈ An−1
k ,

fd(a1, . . . , an−1)xdn + · · ·+ f0(a1, . . . , an−1)

is a polynomial in one variable that is identically zero, so it is the zero polynomial. Thus each
fi(a1, . . . , an−1) is identically zero. Since this holds for all (a1, . . . , an−1) ∈ An−1

k , by the in-
duction hypothesis we conclude that each fi is the zero polynomial. Therefore, f(x1, . . . , xn)
is the zero polynomial, as required.

(2) is clear from the definition of I.
For (3), note that f, g ∈ I(X) and r ∈ R implies X ⊆ Z(f, g) implies X ⊆ Z(rf + g)

implies rf + g ∈ I(X), so I(X) is an ideal. If f t ∈ I(X), then f(a1, . . . , an)t = 0 for all
(a1, . . . , an) ∈ X, so f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ X, and f ∈ I(X).

Determining I(X) can be very difficult; there was already some work involved in settling
I(An

K)! We will explore the relationship between the associations Z and I more soon.
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4.2 The coordinate ring of a variety

The natural condition for a reasonable map between two varieties is that it should also be
made from polynomials.

Definition 4.15. SupposeX is a subvariety of Am
k and Y is a subvariety of An

l . A morphism
of varieties or algebraic map or regular map from X to Y is a function φ : X → Y
defined coordinatewise by polynomials g1, . . . , gn ∈ k[x1, . . . , xm], that is

φ(a1, . . . , am) = (g1(a1, . . . , am), . . . , gn(a1, . . . , am)) for all a ∈ X.

A morphism of varieties φ : X → Y is an isomorphism if there is some morphism of
varieties φ : Y → X such that φ ◦ ψ = idY and ψ ◦ φ = idX .

Not every choice of g1, . . . , gn will give such a morphism, because the tuple (g1(a), . . . , gn(a))
has to satisfy the equations of Y . Furthermore, different choices of g1, . . . , gn may yield the
same morphism.

Example 4.16.

a) Let k be an infinite field. Consider X = Z(xy − 1) ⊆ A2
k (i.e., X is a hyperbola) and

define φ : X → A1
k by φ(a, b) = a. Then φ is an algebraic map (indeed, it is given by a

linear polynomial) and its image is A1
k \ {0}, which is not an algebraic subset of A1

k. So
the set-theoretic image of a morphism of varieties need not be a variety.

b) Take an infinite field, and let Y be the classical cuspidal curve:

Y = Z(y2 − x3) ⊆ A2
k.

Define
φ : A1

K → Y φ(t) = (t2, t3).

This φ is an algebraic map from A1
K to Y , since the component functions are polynomial

functions of t and (t3)2 − (t2)3 = 0 for all t.

Note that this φ is a bijection of sets. However, it is not an isomorphism. Indeed, if it
were, we would have some map ψ such that ψ ◦ φ = idA1

K
. This ψ would be given by

a polynomial h in two variables such that h(t2, t3) = t. It is easy to see that no such h
exists.

c) Consider A6
k as the space of 2 × 3 matrices over K with coordinates x11, . . . , x23, and

consider A5
K as the space of pairs of 2 × 1 and 1 × 3 matrices over K with coordinates

y1, y2, z1, z2, z3. The map of matrix multiplication from A5
k to A6

k is a regular map:

(y1, y2, z1, z2, z3) 7→
[
y1z1 y1z2 y1z3

y2z1 y2z2 y2z3

]
.

We can associate a ring to each subvariety of Ad.
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Definition 4.17. Let k be a field, and X = Zk(I) ⊆ Ad be a subvariety of Ad. The
coordinate ring of X is the ring k[X] := k[x1, . . . , xd]/I(X).

Since k[X] is obtained from the polynomial ring on the ambient Ad by quotienting out
by exactly those polynomials that are zero on X, we interpret k[X] as the ring of polynomial
functions on X. Note that every reduced finitely generated k-algebra is a coordinate ring of
some zero set X.

Since I(X) is a radical ideal, the coordinate ring k[X] is necessarily a reduced, finitely
generated k-algebra.

Definition 4.18. An affine k-algebra is any ring of the form

k[x1, . . . , xn]/I for some ideal I ⊆ k[x1, . . . , xn].

Definition 4.19. Let k be a field. Let X ⊆ Am
k and Y ⊆ An

k be affine varieties. Let
φ : X → Y be a morphism given by (g1(x), . . . , gn(x)), with gi ∈ k[x1, . . . , xm]. We define

k[Y ]
φ∗

// k[X]

f(y1, . . . , yn) � // f(g1(x), . . . , gn(x))

.

Alternatively, thinking of f ∈ k[Y ] as a regular map from Y → A1
k, we have

k[Y ]
φ∗

// k[X]

Y
f−→ A1

k
� // X

fφ−→ A1
k

X
φ−→ Y

f−→ A1
k

We may call this the homomorphism induced by φ or the pullback of φ.

Exercise 14. Show that the rule φ∗ is a well-defined ring homomorphism, and that the map
φ 7→ φ∗ is well-defined.

Exercise 15. For any field k, there is a contravariant functor from affine varieties over k to
affine k-algebras that

• on objects, maps a variety X to its coordinate ring k[X],

• on morphisms, maps a morphism of varieties X
φ−→ Y to its pullback k[Y ]

φ∗−→ k[X].

Example 4.20. We saw before that

X = {(t, t2, t3) | t ∈ k}

is a subvariety of A3
k. Thus its coordinate ring is of the form k[X] = k[x, y, z]/I(X). To

compute I(X), note that the polynomials f ∈ k[x, y, z] that vanish at every point of X are
precisely the polynomials in the kernel of the map k[x, y, z] → k[t] given by x 7→ t, y 7→ t2,
and z 7→ t3. Then one can show that I(X) = (x2 − y, x3 − z). For an explicit field like R or
C, we can also compute this kernel in Macaulay2.

Notice, in fact, that k[X] ∼= k[t, t2, t3].



55

Example 4.21. Fix a field k, and let R = k[x, y, z]. Consider the ideal P given by

P =

x3 − yz︸ ︷︷ ︸
f

, y2 − xz︸ ︷︷ ︸
g

, z2 − x2y︸ ︷︷ ︸
h

 .

We will show that the ring homomorphism

k[x,y,z]
P

π // k[t3, t4, t5]

(x, y, z) � // (t3, t4, t5)

is an isomorphism. First, note that it is immediately surjective by construction, so we just
need to prove it is injective. If we set deg(x) = 3, deg(y) = 4, deg(z) = 5, deg(t) = 1, π is a
graded homomorphism of graded rings, whose kernel is homogeneous. Since [k[t3, t4, t5]]n is
a 1-dimensional vector space generated by tn for all n > 3 (and zero in degrees 1 and 2), it

suffices to show that dim([k[x,y,z]
P

]n) = 1 for all n > 3 (and zero in degrees 1 and 2).

Given any monomial in k[x,y,z]
P

, we can use the relations y2− xz, z2− x2y, and yz− x3 to
obtain an equivalent monomial where the sum of the y and z exponents is smaller until we
get a monomial of the form xa, xay, or xaz. If n = 1, 2, there is no such monomial; if n > 3,
there is exactly one, namely, 

xn/3 if n ≡ 0 mod 3

x(n−4)/3y if n ≡ 1 mod 3

x(n−5)/3y if n ≡ 2 mod 3

This shows that P is the kernel of the map

k[x, y, z] // k[t3, t4, t5]

(x, y, z) � // (t3, t4, t5)

.

Since k[t3, t4, t5] ⊆ k[t] is a domain, we conclude that P is a prime ideal. In fact, P is a
homogeneous ideal with the grading we considered above: our generators f , g, and h are
now homogeneous, with deg(f) = 9, deg(g) = 8, and deg(h) = 10.

We showed in Example 4.5 (11) that Z(P ) is the variety

X = {(t3, t4, t5) | t ∈ k}.

Thus we conclude that

I(X) = P =
(
x3 − yz, y2 − xz, z2 − x2y

)
,

and that k[t3, t4, t5] ∼= k[x, y, z]/P is the coordinate ring k[X].
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4.3 Nullstellensatz

Lemma 4.22. Let k be a field, and R = k[x1, . . . , xd] be a polynomial ring. There is a
bijection

Ad
k

(a1, . . . , ad)

//

� //

{
maximal ideals m of R

with R/m ∼= k

}
(x1 − a1, . . . , xd − ad)

Proof. Each m = (x1 − a1, . . . , xd − ad) is a maximal ideal satisfying R/m ∼= k. Moreover,
these ideals are distinct: if xi − ai, xi − a′i are in the same ideal for ai 6= a′i, then the unit
ai − a′i is in the ideal, so it is not proper. Therefore, our map is injective. To see that it
is surjective, let m be a maximal ideal with R/m ∼= k. Each class in R/m corresponds to a
unique a ∈ k, so in particular each xi is in the class of a unique ai ∈ k. This means that
xi − ai ∈ m, and thus (x1 − a1, . . . , xd − ad) ⊆ m. Since (x1 − ai, . . . , xd − ai) is a maximal
ideal, we must have (x1 − a1, . . . , xd − ad) = m.

Example 4.23. Not all maximal ideals in k[x1, . . . , xd] are necessarily of this form. For
example, if k = R and d = 1, the ideal (x2 + 1) is maximal, but

k[x]/(x2 + 1) ∼= C 6∼= k.

But this won’t happen if k is algebraically closed. Thanks to Zariski’s Lemma, if L is a
field and a finitely generated k-algebra, then L = k. Therefore, the quotient of k[x1, . . . , xd]
by any maximal ideal must be isomorphic to k.

Corollary 4.24 (Nullstellensatz). Let S = k[x1, . . . , xd] be a polynomial ring over an alge-
braically closed field k. There is a bijection

Ad
k

(a1, . . . , ad)

//

� //

{maximal ideals m of S}

(x1 − a1, . . . , xd − ad)

If R is a finitely generated k-algebra, we can write R = S/I for a polynomial ring S, and
there is an induced bijection

Zk(I) ⊆ Ad
k ←→ {maximal ideals m of R}.

Proof. The first part follows immediately from Lemma 4.22 and Zariski’s Lemma. Since we
skipped the proof of Zariski’s Lemma, we give a proof of the case when k is an uncountable
field.

Let k be an uncountable algebraically closed field and m be any maximal ideal in R.
Suppose that L := R/m 6∼= k. Then there exists some element α ∈ L that is transcendental
over k, since k is algebraically closed and L is an extension of k. Now consider the set

S =

{
1

α− c
| c ∈ k

}
.
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If S is a linearly dependent set over k, then we can find finitely many b1, . . . , bn, c1, . . . , cn ∈ k
such that

b1

α− c1

+ · · ·+ bn
α− cn

= 0.

Rewriting the left side as one fraction, the numerator is a polynomial in α with coefficients in
k. But α is transcendental over k, so S is a linearly independent set. But k is uncountable, so
S is uncountable, and that means that dimk(L) is uncountable. On the other hand, L is by
construction algebra-finite over k. Since k is a field, being algebra-finite and module-finite
over k are equivalent conditions, and thus L should be a finite dimensional vector space
over k. This is a contradiction, so we cannot have any transcendental element over k in L.
Since k is algebraically closed, we conclude that k = L.

To show the second statement, fix an ideal I in S, and R = S/I. The maximal ideal
ideals in R are in bijection with the maximal ideals m in S that contain I; those are the
ideals of the form (x1−a1, . . . , xd−ad) with I ⊆ (x1−a1, . . . , xd−ad). These are in bijection
with the points (a1, . . . , ad) ∈ Ad

k satisfying (a1, . . . , ad) ∈ Zk(I).

Theorem 4.25 (Weak Nullstellensatz). Let k be an algebraically closed field. If I is a proper
ideal in R = k[x1, . . . , xd], then Zk(I) 6= ∅.

Proof. If I ⊆ R is a proper ideal, then by Theorem 3.8 there is a maximal ideal m ⊇ I, so
Z(m) ⊆ Z(I). Since m = (x1 − a1, . . . , xd − ad) for some ai ∈ k, Z(m) is a point, and thus
nonempty.

Over an algebraically closed field, maximal ideals in k[x1, . . . , xd] correspond to points in
Ad. So we can start from the solution set — a point — and recover an ideal that corresponds
to it. What if we start with some non-maximal ideal I, and consider its solution set Zk(I)
— can we recover I in some way?

Example 4.26. Many ideals define the same solution set. For example, in R = k[x], the
ideals In = (xn), for any n > 1, all define the same solution set Zk(In) = {0}.

To attack this question, we will need an observation on inequations.

Remark 4.27 (Rabinowitz’s trick). Observe that, if f(x) is a polynomial and a ∈ Ad,
f(a) 6= 0 if and only if f(a) ∈ k is invertible; equivalently, if there is a solution y = b ∈ k to
yf(a)− 1 = 0. In particular, a system of polynomial equations and inequations

f1(x) = 0
...

fm(x) = 0

and


g1(x) 6= 0

...
gn(x) 6= 0

has a solution x = a if and only if the system
f1(x) = 0

...
fm(x) = 0

and


y1g1(x)− 1 = 0

...
yngn(x)− 1 = 0
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has a solution (x, y) = (a, b). In fact, this is equivalent to a system in one extra variable:
f1(x) = 0

...
fm(x) = 0

yg1(x) · · · gn(x)− 1 = 0

Theorem 4.28 (Strong Nullstellensatz). Let R = k[x1, . . . , xd] be a polynomial ring over an
algebraically closed field k. Let I ⊆ R be an ideal. The polynomial f vanishes on Zk(I) if
and only if fn ∈ I for some n > 1. In particular, I(Z(J)) =

√
J .

Proof. Suppose that fn ∈ I. For each a ∈ Zk(I), f(a) ∈ k satisfies f(a)n = 0 ∈ k. Since k
is a field, f(a) = 0. Thus, f ∈ Zk(I) as well.

Suppose that f vanishes along Zk(I). This means that given any solution a ∈ Ad to the
system determined by I, f(a) = 0. In other words, the system{

g(x) = 0 for all g ∈ I
f 6= 0

has no solutions. By the discussion above, Zk(I + (yf − 1)) = ∅ in a polynomial ring in
one more variable. By the Weak Nullstellensatz, we have IR[y] + (yf − 1) = R[y], and
equivalently 1 ∈ IR[y] + (yf − 1). Write I = (g1(x), . . . , gm(x)), and

1 = r0(x, y)(1− yf(x)) + r1(x, y)g1(x) + · · ·+ rm(x, y)gm(x).

We can map y to 1/f to get

1 = r1(x, 1/f)g1(x) + · · ·+ rm(x, 1/f)gm(x)

in the fraction field of R[y]. Since each ri is polynomial, there is a largest negative power of
f occurring; say that fn serves as a common denominator. We can multiply by fn to obtain
fn as a polynomial combination of the g’s.

Remark 4.29. We showed before that Z(IJ) = Z(I ∩ J), despite the fact that we often
have IJ 6= I ∩ J . The Strong Nullstellensatz implies that

√
IJ =

√
I ∩ J .

Corollary 4.30. Let k be an algebraically closed field. The associations Z and I induce
order-reversing bijections

in k[x1, . . . , xn] in An
k

{radical ideals}
I

// {varieties}
Zoo

{prime ideals}
I

// {irred vars}
Zoo

{maximal ideals}
I

// {points}.
Zoo

In particular, given ideals I and J , we have Z(I) = Z(J) if and only if
√
I =
√
J .
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Likewise, for any variety X over an algebraically closed field, we have order-reversing
bijections

in k[X] in X

{radical ideals} // {subvarieties}oo

{prime ideals} // {irred subs}oo

{maximal ideals} // {points}.oo

Under this bijection, irreducible varieties correspond to prime ideals.

Lemma 4.31. A variety X ⊆ Ad
k is irreducible if and only if I(X) is prime.

Proof. Suppose that X is reducible, say X = V1 ∪ V2 for two varieties V1 and V2 such
that V1, V2 ( X. Note that this implies that I(X) ( I(V1), I(X) ( I(V2), and I(X) =
I(V1) ∩ I(V2). Then we can find f ∈ I(V1) such that f /∈ I(V2), and g ∈ I(V2) such that
g /∈ I(V1). Notice that by construction fg ∈ I(V1) ∩ I(V2) = I(X), while f /∈ I(X) and
g /∈ I(X). Therefore, I(X) is not prime.

Now assume that I(X) is not prime, and fix f, g /∈ I(X) with fg ∈ I(X). Then

X ⊆ Z(fg) = Z(f) ∪ Z(g).

The intersections

Vf = Z(f) ∩X = Z(I(X) + (f)) and Vg = Z(g) ∩X = Z(I(X) + (g))

are varieties, and X = Vf ∪ Vg. Finally, since f /∈ I(X), then X 6⊆ Vf . Similarly, X 6⊆ Vg.
Thus X is reducible.

Given a variety X, we can decompose it in irreducible components by writing it as a
union X = V1 ∪ · · · ∪ Vn. We can do this decomposition algebraically, by considering the
radical ideal I = I(X) and writing it as an intersection of its minimal primes.

Example 4.32. In k[x, y, z], the radical ideal I = (xy, xz, yz) corresponds to the variety X
given by the union of the three coordinate axes.

Each of these axes is a variety in its own right, corresponding to the ideals (x, y), (x, z) and
(y, z). The three axes are the irreducible components of X. And indeed, (x, y), (x, z) and
(y, z) are the three minimal primes over I, and

(xy, xz, yz) = (x, y) ∩ (x, z) ∩ (y, z).

We will come back to this decomposition when we discuss primary decomposition.
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In summary, Nullstellensatz gives us a dictionary between varieties and ideals:

Algebra oo // Geometry

algebra of ideals oo // geometry of varieties

algebra of R = k[x1, . . . , xd]
oo // geometry of Ad

radical ideals oo // varieties

prime ideals oo // irreducible varieties

maximal ideals oo // points

(0) oo // variety Ad

k[x1, . . . , xd]
oo // variety ∅

(x1 − a1, . . . , xd − ad) oo // point {(a1, . . . , ad)}

smaller ideals oo // larger varieties

larger ideals oo // smaller varieties



Chapter 5

Local Rings

The study of local rings is central to commutative algebra. As we will see, life is easier in a
local ring, so much so that we often want to localize so we can be in a local ring. A lot of the
things we will say in this chapter have graded analogues: in some ways, N-graded k-algebras
and their homogeneous ideals behave like a local ring, where the homogenous maximal ideal
plays the role of the maximal ideal.

5.1 Local rings

Definition 5.1. A ring R is a local ring if it has exactly one maximal ideal. We often
use the notation (R,m) to denote R and its maximal ideal, or (R,m, k) to also specify the
residue field k = R/m.

Some people reserve the term local ring for a noetherian local ring, and call what we
have defined a quasilocal ring; we will not follow this convention here.

Lemma 5.2. A ring R is local if and only if the set of nonunits of R forms an ideal.

Proof. If R is a local with maximal ideal m, then every nonunit must be in m, and m contains
no nonunits, so m must be the set of nonunits. Conversely, if the set of nonunits is an ideal,
that must be the only maximal ideal, since any other element in R is a unit.

Example 5.3.

a) The ring Z/(pn) is local with maximal ideal (p).

b) The ring of power series kJxK over a field k is local. Indeed, one can show that a power
series has an inverse if and only if its constant term is nonzero; this can be done explicitly,
by writing down the conditions for a power series to be the inverse of another. The unique
maximal ideal is (x).

c) More generally, kJx1, . . . , xdK is local with maximal ideal (x1, . . . , xd).

d) The ring Z(p) = {a
b
∈ Q | p - b when in lowest terms} is a local ring with maximal ideal

(p).

61
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e) The ring of complex power series holomorphic at the origin, C{x}, is local. One can
show that the series inverse of a holomorphic function at the origin is convergent on a
neighborhood of 0.

f) A polynomial ring over a field is certainly not local; we have seen it has so many maximal
ideals!

We start with a comment about the characteristic of local rings.

Definition 5.4. The characteristic of a ring R is, if it exists, the smallest positive integer
n such that

1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0.

If no such n exists, we say that R has characteristic 0. Equivalently, the characteristic of R
is the integer n > 0 such that

(n) = ker

(
Z // R
a � // a · 1R

)
.

Proposition 5.5. Let (R,m, k) be a local ring. Then one of the following holds:

1) char(R) = char(k) = 0. We say that R has equal characteristic zero.

2) char(R) = 0, char(k) = p for a prime p, so R has mixed characteristic (0, p).

3) char(R) = char(k) = p for a prime p, so R has equal characteristic p.

4) char(R) = pn, char(k) = p for a prime p and an integer n > 1.

If R is reduced, then one of the first three cases holds.

Proof. Since k is a quotient of R, the characteristic of R must be a multiple of the charac-
teristic of k, since the map Z // // k factors through R. We must think of 0 as a multiple
of any integer for this to make sense. Now k is a field, so its characteristic is 0 or p for a
prime p. If char(k) = 0, then necessarily char(R) = 0. If char(k) = p, we claim that char(R)
must be either 0 or a power of p. Indeed, if we write char(R) = pn · a with a coprime to p,
note that p ∈ m, so if a ∈ m, we have 1 ∈ (p, a) ⊆ m, which is a contradiction. Since R is
local, this means that a is a unit. But then, pna = 0 implies pn = 0, so the characteristic
must be pn.

Remark 5.6. If R is an N-graded k-algebra with R0 = k, and m =
⊕

n>0R0 is the homoge-
neous maximal ideal, R and m behave a lot like a local ring and its maximal ideal, and we
sometimes use the suggestive notation (R,m) to refer to it. Many properties of local rings
also apply to the graded setting, so given a statement about local rings, you might take it as
a suggestion that there might be a corresponding statement about graded rings — a state-
ment that, nevertheless, still needs to be proved. There are usually some changes one needs
to make to the statement; for example, if a theorem makes assertions about the ideals in a
local ring, the corresponding graded statement will likely only apply to homogeneous ideals,
and a theorem about finitely generated modules over a local ring will probably translate into
a theorem about graded modules in the graded setting.
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5.2 Localization

Recall that a multiplicative subset of a ring R is a set W 3 1 that is closed for products.
The three most important classes of multiplicative sets are the following:

Example 5.7. Let R be a ring.

1) For any f ∈ R, the set W = {1, f, f 2, f 3, . . . } is a multiplicative set.

2) If P ⊆ R is a prime ideal, the set W = R \ P is multiplicative: this is an immediate
translation of the definition.

3) An element that is not a zerodivisor is called a nonzerodivisor or regular element.
The set of regular elements in R forms a multiplicatively closed subset.

Remark 5.8. An arbitrary intersection of multiplicatively closed subsets is multiplicatively
closed. In particular, for any family of primes {pλ}, the complement of

⋃
λ pλ is multiplica-

tively closed.

Definition 5.9 (Localization of a ring). Let R be a ring, and W be a multiplicative set with
0 /∈ W . The localization of R at W is the ring

W−1R :=
{ r
w

∣∣∣ r ∈ R,w ∈ W} / ∼
where ∼ is the equivalence relation

r

w
∼ r′

w′
if there exists u ∈ W : u(rw′ − r′w) = 0.

The operations are given by

r

v
+
s

w
=
rw + sv

vw
and

r

v

s

w
=

rs

vw
.

The zero in W−1R is 0
1

and the identity is 1
1
. There is a canonical ring homomorphism

R //W−1R

r � // r
1

.

Given an ideal I in W−1R, we write I ∩R for its preimage of I in R via the canonical map

R //W−1R . This is the contraction of I into R via the canonical map. Given an ideal
I in R, we write

W−1I :=
{ a
w
| a ∈ I, w ∈ W}

Note that we write elements in W−1R in the form r
w

even though they are equivalence
classes of such expressions.

Remark 5.10. Note that if R is a domain, the equivalence relation simplifies to rw′ = r′w,
so R ⊆ W−1R ⊆ Frac(R), and in particular W−1R is a domain too. In particular, Frac(R)
is a localization of R.



64

In the localization of R at W , every element of W becomes a unit. The following universal
property says roughly that W−1R is the smallest R-algebra in which every element of W is
a unit.

Proposition 5.11. Let R be a ring, and W a multiplicative set with 0 /∈ W . Let S be an
R-algebra in which every element of W is a unit. Then there is a unique homomorphism α
such that the following diagram commutes:

R //

��

W−1R

α
{{

S

where the vertical map is the structure homomorphism and the horizontal map is the canonical
homomorphism.

Example 5.12 (Most important localizations). Let R be a ring.

1) For f ∈ R and W = {1, f, f 2, f 3, . . . } = {fn | n > 0}, we usually write Rf for W−1R.

2) When W is the set of nonzerodivisors on R, we call W−1R the total ring of fractions of
R. When R is a domain, this is just the fraction field of R, and in this case this coincides
with the localization at the prime (0).

3) For a prime ideal P in R, we generally write RP for (R \ P )−1R, and call it the local-
ization of R at P . Given an ideal I in R, we sometimes write IP to refer to IRP , the
image of I via the canonical map R → RP . Notice that when we localize at a prime P ,
the resulting ring is a local ring (RP , PP ). We can think of the process of localization at
P as zooming in at the prime P . Many properties of an ideal I can be checked locally,
by checking them for IRP for each prime P ∈ V (I).

We can now add some more local rings to our list of examples.

Example 5.13.

a) A local ring one often encounters is k[x1, . . . , xd](x1,...,xd). We can consider this as the
ring of rational functions that in lowest terms have a denominator with nonzero constant
term. Note that we can talk about lowest terms since the polynomial ring is a UFD.

b) If k is algebraically closed and I is a radical ideal, then k[x1, . . . , xd]/I = k[X] is the
coordinate ring of some affine variety, and (x1, . . . , xd) = m0 is the ideal defining the
origin (as a point in X ⊆ Ad). Then we call

k[X]m0
:= (k[x1, . . . , xd]/I)(x1,...,xd)

the local ring of the point 0 ∈ X; some people write this as OX,0. The radical
ideals of this ring consist of radical ideals of k[X] that are contained in m0, which by the
Nullstellensatz correspond to subvarieties of X that contain 0. Similarly, we can define
the local ring at any point a ∈ X.
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Lemma 5.14. Let W be multiplicatively closed in R.

1) If I is an ideal in R, then W−1I = IW−1R.

2) If I is an ideal in R, then W−1I ∩R = {r ∈ R | wr ∈ I for some w ∈ W}.

3) If J is an ideal in W−1R, then W−1(J ∩R) = J .

4) If P is prime and W ∩ P = ∅, then W−1P = P (W−1R) is prime.

5) The map Spec(W−1R)→ Spec(R) is injective, with image

{p ∈ Spec(R) | p ∩W = ∅}.

Proof. 1) Note that

W−1I =
{ a
w
| a ∈ I, w ∈ W

}
,

while IW−1R is the ideal generated by all the elements of the form

a · s
w

where s ∈ R,w ∈ W,a ∈ I.

Since we can rewrite
a · s

w
=
sa

w

and sa ∈ I, we conclude that W−1I = IW−1R.

2) If wr ∈ I for some w ∈ W , then

r

1
=
wr

w
∈ W−1I.

Conversely, if r ∈ W−1I ∩R, then that means that

r

1
=
a

w
for some a ∈ I, w ∈ W.

By definition of the equivalence relation defining W−1R, this means that there exists
u ∈ W such that

u(rw − a · 1) = 0⇔ r(uw) = ua ∈ I.

Since W is multiplicatively closed, uw ∈ W , and thus the element t := uw ∈ W satisfies
tr ∈ I.

3) The containment W−1(J ∩ R) ⊆ J holds for general reasons: given any map f , and a
subset J of the target of f , f(f−1(J)) ⊆ J . On the other hand, if a

w
∈ J , then a

1
∈ J ,

since it is a unit multiple of an element of J , and thus a ∈ J ∩R, so a
w
∈ W−1(J ∩R).

4) First, since W ∩P = ∅, and P is prime, no element of W kills 1̄ = 1+P in R/P , so 1̄/1 is
nonzero in W−1(R/P ). Thus, W−1R/W−1P ∼= W−1(R/P ) is nonzero, and a localization
of a domain, hence is a domain. Thus, W−1P is prime.
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5) First, by part 4), the map P 7→ W−1P , for S = {P ∈ Spec(R) | P ∩W = ∅} sends
primes to primes. We claim that

Spec(W−1R)
Q

W−1P

� //

oo �

S
Q ∩R
P

are inverse maps.

We have already seen that J = (J ∩R)W−1R for any ideal J in W−1R.

If W ∩ P = ∅, then using part 2) and the definition of prime, we have that

W−1P ∩R = {r ∈ R | rw ∈ P for some w ∈ W} = {r ∈ R | r ∈ P} = P.

Corollary 5.15. Let R be a ring and P be a prime ideal in R. The map on Spectra induced
by the canonical map R→ RP corresponds to the inclusion

{q ∈ Spec(R) | q ⊆ P} ⊆ Spec(R).

We state an analogous definition for modules, and for module homomorphisms.

Definition 5.16. Let R be a ring, W be a multiplicative set, and M an R-module. The
localization of M at W is the W−1R-module

W−1M :=
{m
w

∣∣∣ m ∈M,w ∈ W
}
/ ∼

where ∼ is the equivalence relation
m

w
∼ m′

w′
if u(mw′ − m′w) = 0 for some u ∈ W . The

operations are given by

m

v
+
n

w
=
mw + nv

vw
and

r

v

m

w
=
rm

vw
.

We will use the notations Mf and MP analogously to Rf and RP .
If R is not a domain, the canonical map R→ W−1R is not necessarily injective.

Example 5.17. Consider R = k[x, y]/(xy). The canonical maps R −→ R(x) and R −→ Ry

are not injective, since in both cases y is invertible in the localization, and thus

x 7→ x

1
=
xy

y
=

0

y
=

0

1
.

To understand localizations of rings and modules, we will want to understand better how
they are built from R, and which elements become zero in the localization. First, we take a
small detour to talk about colons and annihilators.

Definition 5.18. The annihilator of a module M is the ideal

ann(M) := {r ∈ R | rm = 0 for all m ∈M}.
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Definition 5.19. Let I and J be ideals in a ring R. The colon of I and J is the ideal

(J : I) := {r ∈ R | rI ⊆ J}.

More generally, if M and N are submodules of some R-module A, the colon of N and M is

(N :R M) := {r ∈ R | rM ⊆ N}.

Exercise 16. The annihilator of M is an ideal in R, and

ann(M) = (0 :R M).

Moreover, any colon (N :R M) is an ideal in R.

Remark 5.20. If M = Rm is a cyclic R-module, then M ∼= R/I for some ideal I. Notice
that I · (R/I) = 0, and that given an element g ∈ R, we have g(R/I) = 0 if and only if
g ∈ I. Therefore, M ∼= R/ ann(M).

Remark 5.21. Let M be an R-module. If I is an ideal in R such that I ⊆ ann(M), then
IM = 0, and thus M is naturally an R/I-module with the same structure it has as an
R-module, meaning

(r + I) ·m = rm

for each r ∈ R.

Remark 5.22. If N ⊆M are R-modules, then ann(M/N) = (N :R M).

Lemma 5.23. Let M be an R-module, and W a multiplicative set. Then

m

w
∈ W−1M is zero ⇐⇒ vm = 0 for some v ∈ W ⇐⇒ annR(m) ∩W 6= ∅.

Note in particular that this holds for w = 1.

Proof. For the first equivalence, we use the equivalence relation defining W−1R to note that
m
w

= 0
1

in W−1M if and only if there exists some v ∈ W such that 0 = v(1m − 0w) = vm.
The second equivalence just comes from the definition of the annihilator.

Remark 5.24. As a consequence of Lemma 5.23, it follows that if R is a domain, then the
canonical map R → W−1R is always injective for any multiplicatively closed set W , since
every nonzero r ∈ R has ann(r) = 0. Notice, however, that even when R is a domain, the
elements in a module M may still have nontrivial annihilators, and thus M → W−1M may
fail to be injective.

Remark 5.25. If M
α−→ N is an R-module homomorphism, then there is a W−1R-module

homomorphism W−1M
W−1α−−−→ W−1N given by the rule W−1α(m

w
) = α(m)

w
.

Lemma 5.26 (Hom and localization). Let R be a noetherian ring, W be a multiplicative
set, M be a finitely generated R-module, and N an arbitrary R-module. Then,

HomW−1R(W−1M,W−1N) ∼= W−1 HomR(M,N).

In particular, if P is prime,

HomRP
(MP , NP ) ∼= HomR(M,N)P .
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Proving this lemma actually requires some homological algebra that we do not have, so
for now we will just believe it. Similarly, we will black box the fact that localization has
good homological properties: it’s an exact functor.

Theorem 5.27. Given a short exact sequence of R-modules

0 // A // B // C // 0

and a multiplicative set W , the sequence

0 //W−1A //W−1B //W−1C // 0

is also exact.

Remark 5.28. It follows from Lemma 5.23 that if N α //M is injective, then W−1α is also
injective, since

0 = W−1α
(n
w

)
=
α(n)

w
=⇒ 0 = uα(n) = α(un) for some u ∈ W =⇒ un = 0 =⇒ n

w
= 0.

So this explains some of Theorem 5.27, since it shows that localization preserves inclusions.

Remark 5.29. Given a submodule N of M , we can apply Theorem 5.27 to the short exact
sequence

0 // N //M //M/N // 0

and conclude that that W−1(M/N) ∼= W−1M/W−1N .

We want to collect one more lemma for later.

Lemma 5.30. Let M be a module, and N1, . . . , Nt be a finite collection of submodules. Let
W be a multiplicative set. Then,

W−1(N1 ∩ · · · ∩Nt) = W−1N1 ∩ · · · ∩W−1Nt ⊆ W−1M.

Proof. The containment W−1(N1 ∩ · · · ∩Nt) ⊆ W−1N1 ∩ · · · ∩W−1Nt is clear. Elements of
W−1N1 ∩ · · · ∩W−1Nt are of the form n1

w1
= · · · = nt

wt
; we can find a common denominator

to realize this in W−1(N1 ∩ · · · ∩Nt).

5.3 NAK

We will now show a very simple but extremely useful result known as Nakayama’s Lemma.
As noted in [Mat89, page 8], Nakayama himself claimed that this should be attributed to
Krull and Azumaya, but it’s not clear which of the three actually had the commutative ring
statement first. So some authors (eg, Matsumura) prefer to refer to it as NAK. There are
actually a range of statements, rather than just one, that go under the banner of Nakayama’s
Lemma a.k.a. NAK.
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Proposition 5.31. Let R be a ring, I an ideal, and M a finitely generated R-module. If
IM = M , then:

1) there is an element r ∈ 1 + I such that rM = 0, and

2) there is an element a ∈ I such that am = m for all m ∈M .

Proof. Let M = Rm1 + · · ·+Rms. By assumption, we have equations

m1 = a11m1 + · · ·+ a1sms , . . . , ms = as1m1 + · · ·+ assms,

with aij ∈ I. Setting A = [aij] and v = [mi], we have a matrix equation Av = v. By the
Determinantal trick, the element det(Is×s − A) ∈ R kills each mi, and hence it kills M .
Since det(Is×s − A) ≡ det(Is×s) ≡ 1( (mod I)), this determinant is the element r we seek
for the first statement. For the latter statement, set a = 1 − r, which is in I and satisfies
am = m− rm = m for all m ∈M .

Theorem 5.32 (NAK). Let (R,m, k) be a local ring, and M be a finitely generated module.
If M = mM , then M = 0.

Proof. By Proposition 5.31, there exists an element r ∈ 1 + m that annihilates M . Notice
that 1 /∈ m, so any such r must be outside of m, and thus a unit. Multiplying by its inverse,
we conclude that 1 annihilates M , or equivalently, that M = 0.

Theorem 5.33 (NAK). Let (R,m, k) be a local ring, and M be a finitely generated module,
and N a submodule of M . If M = N + mM , then M = N .

Proof. By taking the quotient by N , we see that

M/N = (N + mM)/N = m (M/N) .

By Theorem 5.32, M = N .

Theorem 5.34 (NAK). Let (R,m, k) be a local ring, and M be a finitely generated module.
For m1, . . . ,ms ∈M ,

m1, . . . ,ms generate M ⇐⇒ m1, . . . ,ms generate M/mM.

Thus, any generating set for M consists of at least dimk(M/mM) elements.

Proof. The implication ( =⇒ ) is clear. If m1, . . . ,ms ∈M are such that m1, . . . ,ms generate
M/mM , consider N = Rm1 + · · · + Rms ⊆ M . Since M/mM is generated by the image of
N , we have M = N + mM . By Theorem 5.32, M = N .

Remark 5.35. Since R/m is a field, M/mM is a vector space over the field R/m.

Definition 5.36. Let (R,m) be a local ring, and M a finitely generated module. A set of
elements {m1, . . . ,mt} is a minimal generating set of M if the images of m1, . . . ,mt form
a basis for the R/m vector space M/mM .

As a consequence of basic facts about bases for vector spaces, we conclude the following:
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Lemma 5.37. Let (R,m, k) be a local ring and M be a finitely generated module. Any
generating set for M contains a minimal generating set, and every minimal generating set
has the same cardinality.

Definition 5.38. Let (R,m) be a local ring and N an R-module. The minimal number
of generators of M is

µ(M) := dimR/m (M/mM) .

Equivalently, this is the number of elements in a minimal generating set for M .

We commented before that graded rings behave a lot like local rings, so now we want to
give graded analogues for the results above.

Proposition 5.39. Let R be an N-graded ring, and M a Z-graded module such that M<a = 0
for some a. If M = (R+)M , then M = 0.

Proof. If M 6= 0, then M has a nonzero homogeneous element. Suppose Ma 6= 0. On the
one hand, the homogeneous elements in M live in degrees at least a, but (R+)M lives in
degrees strictly bigger than a. Thus (R+)M 6= M .

This condition includes all finitely generated Z-graded R-modules.

Remark 5.40. If M is finitely generated, then it can be generated by finitely many homo-
geneous elements, the homogeneous components of some finite generating set. If a is the
smallest degree of a homogeneous element in a homogeneous generating set, since R lives
only in positive degrees we must have M ⊆ RM>a ⊆M>a, so M<a = 0.

Just as above, we obtain the following:

Proposition 5.41. Let R be an N-graded ring, with R0 a field, and M a Z-graded module
such that M<a = 0 for some degree a. A set of elements of M generates M if and only if
their images in M/(R+)M span M/(R+)M as a vector space over R0. Since M and (R+)M
are graded, M/(R+)M admits a basis of homogeneous elements.

In particular, if k is a field, R is a positively graded k-algebra, and I is a homogeneous
ideal, then I has a minimal generating set by homogeneous elements, and this set is unique
up to k-linear combinations.

Definition 5.42. Let R be an N-graded ring with R0 a field, and M a finitely generated
Z-graded R-module. The minimal number of generators of M is

µ(M) := dimR/R+ (M/R+M) .

Macaulay2. In Macaulay2, the command mingens returns the a minimal generating set
of the given module (as a list), while numgens returns the minimal number of generators.
Notice that this computation is only reliable if the ring and module you are considering are
defined to be graded.

Note that we can use NAK to prove that certain modules are finitely generated in the
graded case; in the local case, we cannot.
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Decomposing ideals

We will consider a few ways of decomposing ideals into pieces, in three ways with increasing
detail. The first is the most directly geometric: for any ideal I in a noetherian ring, we aim
to write V (I) as a finite union of V (Pi) for prime ideals Pi.

6.1 Minimal primes and support

Recall the definition of minimal primes that we discussed before.

Definition 6.1. Let I be an ideal in a ring R. A minimal prime of I is a minimal element
(with respect to containment) in V (I). More precisely, P is a minimal prime of I if the
following hold:

• P is a prime ideal,

• P ⊇ I, and

• if Q is also a prime ideal and I ⊆ Q ⊆ P , then Q = P .

The set of minimal primes of I is denoted Min(I).

The minimal primes of R are the primes that are minimal in Spec(R), and it is denoted
Min(R). Note that these are precisely the minimal primes over the ideal (0). The nilpotent
elements of a ring R are exactly the elements in every minimal prime of R. The radical of
(0) is often called the nilradical of R, denoted N (R).

Remark 6.2. If P is prime, then Min(P ) = {P}. Also, since V (I) = V (
√
I), we have

Min(I) = Min(
√
I).

Example 6.3. Let k be a field and R = k[x, y]. Every prime containing I = (x2, xy) must
contain x2, and thus x. On the other hand, (x) is a prime ideal containing I. Therefore, I
has a unique minimal prime, and Min(I) = {(x)}.

We showed in Theorem 3.26 that
√
I =

⋂
P∈V (I)

P =
⋂

P∈Min(I)

P.

71



72

Example 6.4. Let k be a field. The radical of the ideal I = (x2, xy) in the ring R = k[x, y]
from Example 6.3 is

√
I = (x). We saw before that Min(I) = {(x)}.

The nilradical of R = k[x, y]/(x2, xy) corresponds to the radical of (x2, xy) in k[x, y], so
it is the ideal (x)/(x2, xy).

Macaulay2. The method minimalPrimes receives an ideal and returns a list of its minimal
primes.

Theorem 6.5. Over a noetherian ring R, every ideal I has finitely many minimal primes,
and thus

√
I is a finite intersection of primes.

Proof. Let S = {ideals I ⊆ R | Min(I) is infinite}, and suppose, to obtain a contradiction,
that S 6= ∅. Since R is noetherian, S has a maximal element J , by Proposition 1.50. If J
was a prime ideal, then Min(J) = {J} would be finite, by Remark 6.2, so J is not prime.
However, Min(J) = Min(

√
J), and thus

√
J ⊇ J is also in S, so we conclude that J is radical.

Since J is not prime, we can find some a, b /∈ J with ab ∈ J . Then J ( J + (a) ⊆
√
J + (a)

and J (
√
J + (b). Since J is maximal in S, we conclude that

√
J + (a) and

√
J + (b) have

finitely many minimal primes, so we can write√
J + (a) = P1 ∩ · · · ∩ Pt and

√
J + (b) = Pt+1 ∩ · · · ∩ Ps

for some prime ideals Pi. Let f ∈
√
J + (a) ∩

√
J + (b). Some sufficiently high power of f

is in both J + (a) and J + (b), so there exist n,m > 1 such that

fn ∈ J + (a) and fm ∈ J + (b).

Thus
fn+m ∈ (J + (a))(J + (b)) ⊆ J2 + J(a) + J(b) + (ab

∈J
) ⊆ J.

Therefore, f ∈
√
J = J . This shows that

J =
√
J + (a) ∩

√
J + (b) = P1 ∩ · · · ∩ Pt ∩ Pt+1 ∩ · · · ∩ Ps.

By Lemma 6.7, we see that Min(J) must be a subset of {P1, . . . , Ps}, so it is finite.

Lemma 6.6. If Min(I) = {P1, . . . , Pn}, no Pi can be deleted in the intersection P1∩· · ·∩Pn.

Proof. Suppose that we can delete Pi, meaning that

n⋂
j=1

Pj =
⋂
j 6=i

Pj.

Then

Pi ⊇
n⋂
j=1

Pj =
⋂
j 6=i

Pj ⊇
∏
j 6=i

Pj.

Since Pi is prime, this implies that Pi ⊇ Pj for some j 6= i, but this contradicts the assumption
that the primes are incomparable.



73

Lemma 6.7. Let I be an ideal in R. If I = P1∩· · ·∩Pn where each Pi is prime and Pi 6⊆ Pj
for each i 6= j, then Min(I) = {P1, . . . , Pn}. Moreover, I must be radical.

Proof. If Q is a prime containing I, then Q ⊇ (P1∩· · ·∩Pn). We claim that Q must contain
one of the Pi. Indeed, if Q 6⊇ Pi for all i, then there are elements fi ∈ Pi such that fi /∈ Q,
so their product satisfies f1 · · · fn ∈ (P1∩ · · · ∩Pn) but f1 · · · fn /∈ Q. This is a contradiction,
so indeed any prime containing I must contain some Pi. Therefore, any minimal prime of
I must be one of the Pi. Since we assumed that the Pi are incomparable, these are exactly
all the minimal primes of I. By assumption, I coincides with the intersection of its minimal
primes, which is

√
I by Theorem 3.26. Therefore, I =

√
I.

Remark 6.8. If I = P1 ∩ · · · ∩ Pn for some primes Pi, we can always delete unnecessary
components until no component can be deleted. Therefore, Min(I) ⊆ {P1, . . . , Pn}.

As a consequence of Lemma 6.6 and Lemma 6.7, if I is a radical ideal, there is a unique
way to write I as a finite intersection of incomparable prime ideals. Moreover, Lemma 6.7,
Theorem 6.5, and Theorem 3.26 also imply that an ideal I is equal to a finite intersection of
primes if and only if I is radical.

We now wish to understand modules in a similar way.

Definition 6.9. If M is an R-module, the support of M is

Supp(M) := {P ∈ Spec(R) | MP 6= 0}.

Proposition 6.10. Given M a finitely generated R-module over a ring R,

Supp(M) = V (annR(M)).

In particular, Supp(R/I) = V (I).

Proof. Let M = Rm1 + · · ·+Rmn. We have

annR(M) =
n⋂
i=1

annR(mi),

so by Proposition 3.12,

V (annR(M)) =
n⋃
i=1

V (annR(mi)).

Notice that we need finiteness here. Also, we claim that

Supp(M) =
n⋃
i=1

Supp(Rmi).

To show (⊇), notice that (Rmi)P ⊆MP , so

P ∈ Supp(Rmi) =⇒ 0 6= (Rmi)P ⊆MP =⇒ P ∈ Supp(M).

On the other hand, the images of m1, . . . ,mn in MP generate MP for each P , and thus
P ∈ Supp(M) if and only if P ∈ Supp(Rmi) for some mi. Thus, we can reduce the equality
Supp(M) = V (annR(M)) to the case of a cyclic module Rm. By Lemma 5.23, m

1
= 0 in MP

if and only if (R \ P ) ∩ annR(m) 6= ∅, which is equivalent to annR(m) 6⊆ P .
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The finitely generated hypothesis is necessary!

Example 6.11. Let k be a field, and R = k[x]. Take

M = Rx/R =
⊕
i>0

k · x−i.

With this k-vector space structure, the action is given by multiplication in the obvious way,
then killing any nonnegative degree terms.

Any element of M is killed by a large power of x, so W−1M = 0 whenever W is a
multiplicatively closed subset of R with W 3 x. Therefore, if P ∈ Supp(M), then x ∈ P ,
and thus Supp(M) ⊆ {(x)}. We will soon see, in Corollary 6.16, that the support of a
nonzero module is nonempty, and thus Supp(M) = {(x)}.

On the other hand, the annihilator of the class of x−n is xn, so

annR(M) ⊆
⋂
n>1

(xn) = 0.

In particular, V (annR(M)) = Spec(R), while Supp(M) = {(x)} 6= Spec(R).

Example 6.12. Let R = C[x], and M =
⊕
n∈Z

R/(x− n).

First, note that Mp =
⊕
n∈Z

(R/(x− n))p, so

Supp(M) =
⋃
n∈Z

Supp(R/(x− n)) =
⋃
n∈Z

V ((x− n)) = {(x− n) | n ∈ Z}.

On the other hand,

annR(M) =
⋂
n∈Z

annR(R/(x− n)) =
⋂
n∈Z

(x− n) = 0.

Note that in this example the support is not even closed.

Lemma 6.13. Let R be a ring, L,M,N be modules. If

0 // L //M // N // 0

is exact, then Supp(L) ∪ Supp(N) = Supp(M).

Proof. Localization is exact, by Theorem 5.27, so for any P ,

0 // LP //MP
// NP

// 0

is exact. If P ∈ Supp(L) ∪ Supp(N), then LP or NP is nonzero, so MP must be nonzero as
well. On the other hand, if P /∈ Supp(L) ∪ Supp(N), then LP = NP = 0, so MP = 0.

Remark 6.14. As a corollary of Lemma 6.13, given modules L ⊆M , Supp(L) ⊆ Supp(M).
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Lemma 6.15. Let R be a ring, M an R-module, and m ∈M . The following are equivalent:

1) m = 0 in M .

2) m
1

= 0 in MP for all P ∈ Spec(R).

3) m
1

= 0 in MP for all P ∈ mSpec(R).

Proof. The implications 1)⇒ 2)⇒ 3) are clear. To show 3)⇒ 1), we prove the contraposi-
tive. Given m 6= 0, its annihilator is a proper ideal, which must be contained in a maximal
ideal by Theorem 3.8. In particular, V (annRm) = Supp(Rm) contains a maximal ideal, say
P , so m

1
6= 0 in MP .

Corollary 6.16. If M is an R-module, the following are equivalent:

1) M = 0.

2) MP = 0 in MP for all P ∈ Spec(R).

3) MP = 0 in MP for all P ∈ mSpec(R).

Therefore, Supp(M) 6= ∅ for any R-module M 6= 0.

Proof. The implications ⇒ are clear. To show 3) ⇒ 1), we show the contrapositive. If
m 6= 0, consider Rm ⊆ M . By Lemma 6.15, there is a maximal ideal in Supp(Rm), and
by Lemma 6.13 applied to the inclusion Rm ⊆ M , this maximal ideal is in Supp(M) as
well.

6.2 Associated primes

Remark 6.17. Let R be a ring, I be an ideal in R, and M be an R-module. To give
an R-module homomorphism R −→ M is the same as choosing an element m of M (the
image of 1 via our map) or equivalently, to choose a cyclic submodule of M (the submodule
generated by m).

To give an R-module homomorphism R/I −→ M is the same as giving an R-module
homomorphism R −→ M whose image is killed by I. Thus giving an R-module homomor-
phism R/I −→M is to choose an element m ∈M that is killed by I, meaning I ⊆ ann(m).
The kernel of the map R → M given by 1 7→ m is precisely ann(m), so a well-defined map
R/I →M given by 1 7→ m is injective if and only if I = ann(m).

Definition 6.18. Let R be a ring and M an R-module. We say that P ∈ Spec(R) is an
associated prime of M if P = annR(m) for some m ∈ M . Equivalently, P is associated
to M if there is an injective homomorphism R/P −→ M . We write AssR(M) for the set of
associated primes of M . If I is an ideal, by the associated primes of I we (almost always)
mean the associated primes of the R-module R/I.



76

Example 6.19. Let k be a field and let R = kJx, yK. Consider ideal I = (x2, xy) and
the R-module M = R/I. The element x + I in M is killed by both x and y, and thus
(x, y) ⊆ ann(x + I). On the other hand, x + I 6= 0, so ann(x + I) 6= R. Since (x, y)
is the unique maximal ideal in R, we conclude that ann(x + I) = (x, y). In particular,
(x, y) ∈ Ass(M). Since M = R/I, this also says that (x, y) is an associated prime of I.

Lemma 6.20. Let R be a noetherian ring and M be an R-module. A prime P is associated
to M if and if and only if PP ∈ Ass(MP ).

Proof. Localization is exact, by Theorem 5.27, so any inclusion R/P ⊆ M localizes to an
inclusion RP/PP ⊆ MP . Conversely, suppose that PP = ann(m

w
) for some m

w
∈ MP . Let

P = (f1, . . . , fn). For each i, since fi
1
m
w

= 0
1
, there exists ui /∈ P such that uifim = 0. Then

u = u1 · · ·un is not in P , since P is prime, and ufim = 0 for all i. Since the fi generate
P , we have P (um) = 0. On the other hand, if r ∈ ann(um), then ru

1
∈ ann(m

w
) = PP . We

conclude that ru ∈ PP ∩R = P . Since u /∈ P and P is prime, we conclude that r ∈ P .

Lemma 6.21. If P is prime, AssR(R/P ) = {P}.

Proof. For any nonzero r + P ∈ R/P , we have annR(r + P ) = {s ∈ R | rs ∈ P} = P by
definition of prime ideal.

However, R/I might have a unique associated prime even if I is not prime.

Example 6.22. Let k be a field and R = kJxK. Consider the ideal I = (x2), and the R-
module M = R/I. If P is a prime ideal in R and P is associated to M , then P = ann(r+ I)
for some r ∈ R. Since I = ann(M), P must contain I; since P is prime and x2 ∈ P , we
conclude that P ⊇ (x). On the other hand, (x) is a maximal ideal, so P = (x). Thus
Ass(M) ⊆ {(x)}. Moreover, by an argument similar to the one we used in Example 6.19,
we can show that (x) = ann(x + I). Therefore, Ass(M) = {(x)}, and (x) is the unique
associated prime of (x2). However, (x2) is not a prime ideal.

In what follows, we will prove some results about associated primes of graded modules
over graded rings, and we will need the following lemma:

Lemma 6.23. If R is a Z-graded ring, then any ideal I with the property

for any homogeneous elements r, s ∈ R, rs ∈ I ⇒ r ∈ I or s ∈ I

is prime.

Proof. We need to show that this property implies that for any a, b ∈ R not necessarily
homogeneous, ab ∈ I implies a ∈ I or b ∈ I. We do this by induction on the number of
nonzero homogeneous components of a plus the number of nonzero homogeneous components
of b. This is not interesting if a = 0 or b = 0, so the base case is when this is two. In that
case, both a and b are homogeneous, so the hypothesis already gives us this case. For the
induction step, write a = a′+ am and b = b′+ bn, where am, bn are the nonzero homogeneous
components of a and b of largest degree, respectively. We have ab = (a′b′+amb

′+bna
′)+ambn,

where ambn is either the largest homogeneous component of ab or zero. Either way, ambn ∈ I,
so am ∈ I or bn ∈ I; without loss of generality, we can assume am ∈ I. Then ab = a′b+ amb,
and ab, amb ∈ I, so a′b ∈ I, and the total number of homogeneous pieces of a′b is smaller, so
by induction, either a′ ∈ I so that a ∈ I, or else b ∈ I.
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Let’s recall the definition of zerodivisors on M .

Definition 6.24. Let M be an R-module. An element r ∈ R is a zerodivisor on M if
rm = 0 for some nonzero m ∈M . We denote the set of zerodivisors of M by Z(M).

Lemma 6.25. If R is noetherian, and M is an arbitrary R-module, then for any nonzero
m ∈M , annR(m) is contained in an associated prime of M . If R and M are graded and m
is a homogeneous element, then annR(m) is contained in a homogeneous prime.

Proof. The set of ideals S := {annR(m) | m ∈ M,m 6= 0} is nonempty, and any element in
S is contained in a maximal element, by noetherianity. Note in fact that any element in S
must be contained in a maximal element of S. Let I = ann(m) be any maximal element, and
let rs ∈ I, s /∈ I. We always have ann(sm) ⊇ ann(m), and equality holds by the maximality
of ann(m) in S. Then r(sm) = (rs)m = 0, so r ∈ ann(sm) = ann(m) = I. We conclude
that I is prime, and therefore it is an associated prime of M .

The same argument above works if we take {annR(m) | m ∈ M,m 6= 0 homogeneous},
using Lemma 6.23.

Theorem 6.26. If R is noetherian, and M is an arbitrary R-module, then

Ass(M) = ∅⇐⇒M = 0.

If R and M are Z-graded and M 6= 0, then M has an associated prime that is homogeneous.

Proof. Even if R is not noetherian, M = 0 implies Ass(M) = ∅ by definition. So we focus
on the case when M 6= 0. If M 6= 0, then M contains a nonzero element m, and ann(m) is
contained in an associated prime of M , by Lemma 6.25. In particular, Ass(M) 6= 0. In the
graded setting, Lemma 6.25 gives us a homogeneous associated prime.

Theorem 6.27. If R is noetherian, and M is an arbitrary R-module, then⋃
P∈Ass(M)

P = Z(M).

Proof. If r ∈ Z(M), then by definition we have r ∈ ann(m) for some nonzero m ∈M . Since
ann(m) is contained in some associated prime of M , by Lemma 6.25, then r is also contained
in some associated prime of M . On the other hand, if P is an associated prime of M , then
by definition all elements in P are zerodivisors on M .

For the graded case, replace the set of zerodivisors with the annihilator of all homoge-
neous elements. The annihilator of all homogeneous elements is homogeneous, since if m is
homogeneous, and fm = 0, writing f = fa1 + · · ·+ fab as a sum of homogeneous elements of
different degrees ai, then 0 = fm = fa1m+ · · ·+ fabm is a sum of homogeneous elements of
different degrees, so faim = 0 for each i.

Lemma 6.28. If
0 // L //M // N // 0

is an exact sequence of R-modules, then Ass(L) ⊆ Ass(M) ⊆ Ass(L) ∪ Ass(N).
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Proof. If R/P includes in L, then composition with the inclusion L ↪→M gives an inclusion
R/P ↪→M . Therefore, Ass(L) ⊆ Ass(M).

Now let P ∈ Ass(M), and let m ∈ M be such that P = ann(m). First, note that
P ⊆ ann(rm) for all r ∈ R.

Thinking of L as a submodule of M , suppose that there exists r /∈ P such that rm ∈ L.
Then

s(rm) = 0⇐⇒ (sr)m = 0 =⇒ sr ∈ P =⇒ s ∈ P.

So P = ann(rm), and thus P ∈ Ass(L).
If rm /∈ L for all r /∈ P , let n be the image of m in N . Thinking of N as M/L,

if rn = 0, then we must have rm ∈ L, and by assumption this implies r ∈ P . Since
P = ann(m) ⊆ ann(n), we conclude that P = ann(n). Therefore, P ∈ Ass(N).

Note that the inclusions in Lemma 6.28 are not necessarily equalities.

Example 6.29. If M is a module with at least two associated primes, and P is an associated
prime of M , then

0 // R/P //M

is exact, but {P} = Ass(R/P ) ( Ass(M).

Example 6.30. Let R = k[x], where k is a field, and consider the short exact sequence of
R-modules

0 // (x) // R // R/(x) // 0 .

Then one can check that:

• Ass(R/(x)) = Ass(k) = {(x)}.

• Ass(R) = Ass((x)) = {(0)}.

In particular, Ass(R) ( Ass(R/(x)) ∪ Ass((x)).

Corollary 6.31. Let A and B be R-modules. Then Ass(A⊕B) = Ass(A) ∪ Ass(B).

Proof. Apply Lemma 6.28 to the short exact sequence

0 // A // A⊕B // B // 0 .

We obtain Ass(A) ⊆ Ass(A⊕B) ⊆ Ass(A) ∪ Ass(B). Repeat with

0 // B // A⊕B // A // 0 ,

to conclude that Ass(B) ⊆ Ass(A⊕ B). So we have shown both Ass(A) ⊆ Ass(A⊕ B) and
Ass(B) ⊆ Ass(A⊕B), so Ass(A)∪Ass(B) ⊆ Ass(A⊕B). Since we have also already shown
Ass(A⊕B) ⊆ Ass(A) ∪ Ass(B), we must have Ass(A⊕B) = Ass(A) ∪ Ass(B).

We will need a bit of notation for graded modules to help with the next statement; we
saw a simple use of this notation back in Example 2.14.
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Definition 6.32. Let R and M be T -graded, and t ∈ T . The shift of M by t is the graded
R-module M(t) with graded pieces M(t)i := Mt+i. This is isomorphic to M as an R-module,
when we forget about the graded structure.

Theorem 6.33. Let R be a noetherian ring, and M is a finitely generated module. There
exists a filtration of M

M = Mt )Mt−1 )Mt−2 ) · · · )M1 )M0 = 0

such that Mi/Mi−1
∼= R/Pi for primes Pi ∈ Spec(R). This is a prime filtration of M .

If R and M are Z-graded, there exists a prime filtration of M where the quotients
Mi/Mi−1

∼= (R/Pi)(ti) are graded modules, the Pi are homogeneous primes, and ti ∈ Z.

Proof. If M 6= 0, then M has at least one associated prime, by Theorem 6.27, so there is
an inclusion R/P1 ⊆ M . Let M1 be the image of this inclusion. If M/M1 6= 0, it has an
associated prime, so there is an M2 ⊆ M such that R/P2

∼= M2/M1 ⊆ M/M1. Continuing
this process, we get a strictly ascending chain of submodules of M where the successive
quotients are of the form R/Pi. If we do not have Mt = M for some t, then we get an infinite
strictly ascending chain of submodules of M , which contradicts that M is a noetherian
module.

In the graded case, if Pi is the annihilator of an element mi of degree ti, we have a
degree-preserving map (R/Pi)(ti) ∼= Rmi sending the class of 1 to mi.

Example 6.34. Let’s build a prime filtration for the module M = R/I, where I = (x2, yz)
and R = Q[x, y, z]. With a little help from Macaulay2, we find that

i4 : associatedPrimes M

o4 = {ideal (y, x), ideal (z, x)}

o4 : List

So our first goal is to find m ∈M such that ann(m) = (x, z) or ann(m) = (x, y). Let’s start
from (x, z). To find such an element, we can start by searching for all the elements killed by
(x, z):

i5 : I : ideal"x,z"
2

o5 = ideal (y*z, x*y, x )

o5 : Ideal of R

Now yz and x2 are both 0 in M , so the submodule of M generated by xy is precisely the set
of elements killed by (x, z). Is ann(R · xy) = (x, z)?

i6 : ann ((I + ideal(x*y))/I)

o6 = ideal (z, x)

o6 : Ideal of R
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Yes, it is! So our prime filtration starts with

M0 = 0 ⊆M1 =
I + (xy)

I
,

where our computations so far show that ann(M1) = (x, z). For step 2, we start from scratch,
and compute the associated primes of M/M1

∼= R/(I + (y)):

i7 : associatedPrimes (R^1/(I + ideal"xy"))

o7 = {ideal (y, x), ideal (z, x)}

o7 : List

Unfortunately, we will again have to find another element killed by (x, z). So we repeat the
process:

i8 : (I + ideal"xy") : ideal"x,z"
2

o8 = ideal (y, x )

o8 : Ideal of R

i9 : ann((I + ideal"y")/(I + ideal"xy"))

o9 = ideal (z, x)

o9 : Ideal of R

So in M1, ann(y) = (x, z), so we can take the submodule generated by y for our next step,
so our prime filtration for now looks like

M0 = 0 ⊆
R/(x,z)

M1 =
I + (xy)

I
⊆

R/(x,z)
M2 =

I + (y)

I
.

So now we repeat the process with M/M2
∼= R/(I + (y)):

i10 : associatedPrimes (R^1/(I + ideal"y"))

o10 = {ideal (y, x)}

o10 : List

i11 : (I + ideal"y") : ideal"x,y"

o11 = ideal (y, x)

o11 : Ideal of R

i12 : ann((I + ideal"x")/(I + ideal"y"))

o12 = ideal (y, x)

o12 : Ideal of R



81

This gives us

M0 = 0 ⊆
R/(x,z)

M1 =
I + (xy)

I
⊆

R/(x,z)
M2 =

I + (y)

I
⊆

R/(x,y)
M3 =

I + (x, y)

I
.

Next, we take M/M3
∼= R/(I + (x, y)) and find that

i13 : associatedPrimes (R^1/(I + ideal"x,y"))

o13 = {ideal (y, x)}

o13 : List

i14 : (I + ideal"x,y") : ideal"x,y"

o14 = ideal 1

o14 : Ideal of R

This last computation actually says we are done: since (x, y) kills everything inside M/M3,
we can now complete our prime filtration with

0 ⊆
R/(x,z)

M1 =
I + (xy)

I
⊆

R/(x,z)
M2 =

I + (y)

I
⊆

R/(x,y)
M3 =

I + (x, y)

I
⊆

R/(x,y)
M4 = R/I.

The prime ideals that appear in this filtration are (x, y) and (x, z). From the computation
in the beginning, these are precisely the associated primes of M .

Corollary 6.35. If R is a noetherian ring, and M is a finitely generated module, and

M = Mt )Mt−1 )Mt−2 ) · · · )M1 )M0 = 0

is a prime filtration of M with Mi/Mi−1
∼= R/Pi, then

AssR(M) ⊆ {P1, . . . , Pt}.

Therefore, AssR(M) is finite. Moreover, if M is graded, then AssR(M) is a finite set of
homogeneous primes.

Proof. For each i, we have a short exact sequence

0 //Mi−1
//Mi

//Mi/Mi−1
// 0 .

By Lemma 6.28, Ass(Mi) ⊆ Ass(Mi−1)∪Ass(Mi/Mi−1) = Ass(Mi−1)∪{Pi}. Inductively, we
have Ass(Mi) ⊆ {P1, . . . , Pi}, and AssR(M) = AssR(Mt) ⊆ {P1, . . . , Pt}. This immediately
implies that Ass(M) is finite. In the graded case, Theorem 6.33 gives us a filtration where
all the Pi are homogeneous primes, and those include all the associated primes.

Example 6.36. Any subset X ⊆ Spec(R) (for any R) can be realized as Ass(M) for some

module M : take M =
⊕
P∈X

R/P . However, M is not finitely generated when X is infinite.
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Example 6.37. If R is not noetherian, then there may be modules (or ideals even) with
no associated primes. Let R =

⋃
n∈N CJx1/nK be the ring of nonnegatively-valued Puiseux

series. We claim that R/(x) is a cyclic module with no associated primes, i.e., the ideal
(x) has no associated primes. First, observe that any element of R can be written as a
unit times xm/n for some m,n, so any associated prime of R/(x) must be the annihilator
of xm/n + (x) for some m 6 n. However, we claim that these are never prime. Indeed,
we have ann(xm/n + (x)) = (x1−m/n), which is not prime since (x1/2−m/2n)2 ∈ (x1−m/n) but
x1/2−m/2n /∈ (x1−m/n).

In a noetherian ring, associated primes localize well.

Theorem 6.38 (Associated primes localize in noetherian rings). Let R be a noetherian ring,
W a multiplicative set, and M a module. Then

AssW−1R(W−1M) = {W−1P | P ∈ AssR(M), P ∩W = ∅}.

Proof. Given P ∈ AssR(M) such that P ∩W = ∅, Lemma 5.14 says that W−1P is a prime
in W−1R. Then W−1R/W−1P ∼= W−1(R/P ) ↪→ W−1M by exactness (see Theorem 5.27),
so W−1P is an associated prime of W−1M .

Now suppose that Q ∈ Spec(W−1R) is associated to W−1M . By Lemma 5.14, we know
this is of the form W−1P for some prime P in R such that P ∩W = ∅. Since R is noetherian,
P is finitely generated, say P = (f1, . . . , fn) in R, and so Q =

(
f1
1
, . . . , fn

1

)
.

By assumption, Q = ann(m
w

) for some m ∈ M , w ∈ W . Since w is a unit in W−1R, we
can also write Q = ann(m

1
). By definition, this means that for each i

fi
1

m

1
=

0

1
⇐⇒ uifim = 0 for some ui ∈ W.

Let u = u1 · · ·un ∈ W . Then ufim = 0 for all i, and thus Pum = 0. We claim that in
fact P = ann(um) in R. Consider v ∈ ann(um). Then u(vm) = 0, and since u ∈ W , this
implies that vm

1
= 0. Therefore, v

1
∈ ann(m

1
) = W−1P , and vw ∈ P for some w ∈ W . But

P ∩W = ∅, and thus v ∈ P . Thus P ∈ Ass(M).

Theorem 6.39. Let R be noetherian and M be an R-module.

Supp(M) =
⋃

P∈Ass(M)

V (P ).

Proof. Let P ∈ AssR(M), and fix m ∈ M such that P = annR(m). Let Q ∈ V (P ). By
Proposition 6.10, Q ∈ Supp(R/P ). Since 0→ R/P

m−→M is exact and localization is exact,
by Theorem 5.27, 0 → (R/P )Q → MQ is also exact. Since (R/P )Q 6= 0, we must also have

MQ 6= 0, and thus Q ∈ Supp(M). This shows Supp(M) ⊇
⋃

P∈Ass(M)

V (P ).

Now let Q be a prime ideal and suppose that

Q /∈
⋃

P∈Ass(M)

V (P ).

In particular, Q does not contain any associated prime of M . Then there is no associated
prime of M that does not intersect R \ Q, so by Theorem 6.38, AssRQ

(MQ) = ∅. By
Theorem 6.27, MQ = 0.
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Theorem 6.40. Let R be noetherian and M be an R-module. If M is a finitely generated
R-module, then Min(annR(M)) ⊆ AssR(M). In particular, Min(I) ⊆ AssR(R/I).

Proof. By Theorem 6.39,

V (annR(M)) = SuppR(M) =
⋃

P∈Ass(M)

V (P ),

so the minimal elements of both sets agree. In particular, the right hand side has the minimal
primes of annR(M) as minimal elements, and they must be associated primes of M , or else
this would contradict minimality.

So the minimal primes of a module M are all associated to M , and they are precisely
the minimal elements in the support of M .

Definition 6.41. If I is an ideal, then an associated prime of I that is not a minimal prime
of I is called an embedded prime of I.

Theorem 6.42. Let I be an ideal and M a finitely generated module over a noetherian ring
R. If I consists of zerodivisors on M , then Im = 0 for some nonzero m ∈M .

Proof. The assumption says that

I ⊆
⋃

P∈Ass(M)

(P ).

By the assumptions, Corollary 6.35 applies, and it guarantees that this is a finite set of
primes. By prime avoidance, I ⊆ P for some P ∈ Ass(M). Equivalently, I ⊆ annR(m) for
some nonzero m ∈M .

6.3 Primary decomposition

We refine our decomposition theory once again, and introduce primary decompositions of
ideals. One of the fundamental classical results in commutative algebra is the fact that
every ideal in any noetherian ring has a primary decomposition. This can be thought of as
a generalization of the Fundamental Theorem of Arithmetic:

Theorem 6.43 (Fundamental Theorem of Arithmetic). Every nonzero integer n ∈ Z can
be written as a product of primes: there are distinct prime integers p1, . . . , pn and integers
a1, . . . , an > 1 such that

n = pa11 · · · pann .
Moreover, such a a product is unique up to sign and the order of the factors.

We will soon discover that such a product is a primary decomposition, perhaps after some
light rewriting. But before we get to the what and the how of primary decomposition, it is
worth discussing the why. If we wanted to extend the Fundamental Theorem of Arithmetic
to other rings, our first attempt might involve irreducible elements. Unfortunately, we don’t
have to go far to find rings where we cannot write elements as a unique product of irreducibles
up to multiplying by a unit.
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Example 6.44. In Z[
√
−5],

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

are two different ways to write 6 as a product of irreducible elements. In fact, we cannot
obtain 2 or 3 by multiplying 1 +

√
−5 or 1−

√
−5 by a unit.

Instead of writing elements as products of irreducibles, we will write ideals in terms of
primary ideals.

Definition 6.45. We say that an ideal is primary if

xy ∈ I =⇒ x ∈ I or y ∈
√
I.

We say that an ideal is P -primary, where P is prime, if I is primary and
√
I = P .

Lemma 6.46. The radical of a primary ideal is prime.

Proof. Suppose that Q is primary and xy ∈
√
Q. Then xnyn ∈ Q for some n. If y /∈

√
Q,

then yn /∈
√
Q. Since Q is primary, we must have xn ∈ Q, so x ∈

√
Q.

Example 6.47.

a) Any prime ideal is also primary.

b) If R is a UFD, we claim that a principal ideal is primary if and only if it is generated by
a power of a prime element. Indeed, if a = fn, with f irreducible, then

xy ∈ (fn)⇐⇒ fn|xy ⇐⇒ fn|x or f |y ⇐⇒ x ∈ (fn) or y ∈
√

(fn) = (f).

Conversely, if a is not a prime power, then a = gh, for some g, h nonunits with no
common factor, then take gh ∈ (a) but g /∈ (a) and h /∈

√
(a).

c) As a particular case of the previous example, the nonzero primary ideals in Z are of the
form (pn) for some prime p and some n > 1. This example is a bit misleading, as it
suggests that primary ideals are the same as powers of primes. We will soon see that it
is not the case.

d) In R = k[x, y, z], the ideal I = (y2, yz, z2) is primary. Give R the grading with weights
deg(y) = deg(z) = 1 and deg(x) = 0. If g /∈

√
I = (y, z), then g has a degree zero term.

If f /∈ I, then f has a term of degree zero or one. The product fg has a term of degree
zero or one, so is not in I.

If the radical of an ideal is prime, that does not imply that ideal is primary.

Example 6.48. In R = k[x, y, z], the ideal Q = (x2, xy) is not primary, even though√
Q = (x) is prime. The offending product is xy: we have x /∈ Q and y /∈

√
Q.

Remark 6.49. One thing that can be confusing about primary ideals is that the definition
is not symmetric. For Q to be a primary ideal, given a product xy ∈ Q, the definition says
that if x /∈ Q, then y ∈

√
Q, and it also says that if y /∈ Q, then x ∈

√
Q. In Example 6.48,

we found that x /∈ Q and y /∈
√
Q, so Q is not primary. Notice that if we switch the roles of

x and y, we do have x ∈
√
Q, but that is not sufficient to make Q a primary ideal.
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Theorem 6.50. If R is noetherian, the following are equivalent:

(1) Q is primary.

(2) Every zerodivisor in R/Q is nilpotent on R/Q.

(3) Ass(R/Q) is a singleton.

(4) Q has exactly one minimal prime, and no embedded primes.

(5)
√
Q = P is prime and for all r, w ∈ R with w /∈ P , rw ∈ Q⇒ r ∈ Q.

(6)
√
Q = P is prime, and QRP ∩R = Q.

Proof. (1) ⇐⇒ (2): Saying y is a zerodivisor modulo Q if there is some x /∈ Q with xy ∈ Q.
So the condition that every zerodivisor on R/Q must be nilpotent is equivalent to

∃x /∈ Q : xy ∈ Q =⇒ yn ∈ Q.

This is exactly the condition that Q is a primary ideal.
(2) ⇐⇒ (3): First, note that the associated primes of R/Q are the associated primes of

the ideal Q, while the minimal primes of R/Q are the minimal primes of Q. By Theorem 6.27,⋃
P∈Ass(Q)

P = Z(R/Q).

By Theorem 6.40, every minimal prime of Q is associated to Q, so⋂
P∈Min(Q)

P =
⋂

P∈Ass(Q)

P.

Finally, every nilpotent element is always a zerodivisor. Putting all these together, we always
have the following:⋃

P∈Ass(Q)

P = Z(R/Q) ⊇ {r ∈ R | r +Q ∈ N (R/Q)} =
⋂

P∈Min(Q)

P =
⋂

P∈Ass(Q)

P.

On the one hand, (2) says that the set of zerodivisors on R/Q coincides with the elements
in the nilradical of R/Q; thus (2) is the statement that we have equality throughout. So (2)
holds if and only if ⋃

P∈Ass(Q)

P =
⋂

P∈Ass(Q)

P.

The rest of the proof is elementary set theory: the intersection and union of a collection of
sets agree if and only if there is only one set. More precisely, we have equality above if and
only if there is only one associated prime.

(3) ⇐⇒ (4) is clear, given that every ideal has a minimal prime and minimal primes
are always associated, so having a single associated prime means having only one minimal
prime and no embedded primes.
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(1) ⇐⇒ (5): Given the observation that the radical of a primary ideal is prime, this is
just a rewording of the definition.

(5) ⇐⇒ (6): By Lemma 5.14, we have the following characterization:

QRP ∩R = {r ∈ R | sr ∈ Q for some s /∈ P}.

Thus the second condition in (5) is equivalent to QRQ ∩R = Q.

If the radical of an ideal is maximal, that does imply the ideal is primary.

Lemma 6.51. Let R be a noetherian ring and I be an ideal. If
√
I = m a maximal ideal,

then I is a primary ideal.

Proof. By Theorem 6.39, Ass(R/I) is nonempty and contained in Supp(R/I) = V (I) = {m},
so Ass(R/I) = {m}, and hence by Theorem 6.50 I is primary.

Note that the assumption that m is maximal was necessary here. Indeed, having a prime
radical does not guarantee an ideal is primary, as we saw in Example 6.48. Moreover, even
the powers of a prime ideal may fail to be primary.

Example 6.52. Fix a field k and an integer n > 2, and let R = k[x, y, z]/(xy − zn).
Consider the prime ideal P = (x, z) in R. On the one hand, xy = zn ∈ P n, while x /∈ P n

and y /∈
√
P n = P . Therefore, P n is not primary, even though its radical is the prime P .

The contraction of primary ideals is always primary.

Lemma 6.53. Let R
f
// S be a ring homomorphism. If Q is a primary ideal in S, then

Q ∩R is a primary ideal in R.

Proof. If xy ∈ Q ∩ R, and x /∈ Q ∩ R, then f(x) /∈ Q, so f(yn) = f(y)n ∈ Q for some n.
Therefore, yn ∈ Q ∩R, and Q ∩R is indeed primary.

Lemma 6.54. If I1, . . . , It are ideals, then

Ass

(
R/

t⋂
j=1

Ij

)
⊆

t⋃
j=i

Ass(R/Ij).

Proof. The canonical map R→ R/I1⊕R/I2 sending r 7→ (r+I1, r+I2) has kernel I1∩I2, so
there is an inclusion R/(I1 ∩ I2) ⊆ R/I1⊕R/I2. Hence, by Lemma 6.28 and Corollary 6.31,

Ass(R/(I1 ∩ I2)) ⊆ Ass(R/I1 ⊕R/I2) = Ass(R/I1) ∪ Ass(R/I2).

The statement for larger t follows by an easy induction.

Corollary 6.55. A finite intersection of P -primary ideals is P -primary.
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Proof. Let I1, . . . , It be P -primary ideals. Then by Lemma 6.54,

Ass

(
t⋂

j=1

Ij

)
⊆

t⋃
j=i

Ass(Ij) = {P}.

On the other hand,
t⋂

j=1

Ij ⊆ I1 6= R so R/(
t⋂

j=1

Ij) 6= 0.

By Theorem 6.27, Ass(I1 ∩ · · · ∩ It) is nonempty, and thus Ass(I1 ∩ · · · ∩ It) = {P}. Then
I1 ∩ · · · ∩ It is P -primary by the characterization of primary in Theorem 6.50 (3) above.

Definition 6.56 (Primary decomposition). A primary decomposition of an ideal I is an
expression of the form

I = Q1 ∩ · · · ∩Qt

with each Qi primary. A primary decomposition is irredundant if√
Qi 6=

√
Qj for i 6= j and Qi 6⊇

⋂
j 6=i

Qj for all i.

Some authors use the term minimal instead of irredundant.

Remark 6.57. By Corollary 6.55, the intersection of P -primary ideals is P -primary. Thus
we can turn any primary decomposition into an irredundant one by combining the terms
with the same radical, then removing redundant terms.

Example 6.58 (Primary decomposition in Z). Given a decomposition of n ∈ Z as a product
of distinct primes, say n = pa11 · · · p

ak
k , then the primary decomposition of the ideal (n) is

(n) = (pa11 ) ∩ · · · ∩ (pakk ). However, this example can be deceiving, in that it suggests that
primary ideals are just powers of primes; as we saw in Example 6.52, powers of primes may
fail to be primary! Moreover, an ideal might be primary but not a power of a prime.

The existence of primary decompositions was first shown by Emanuel Lasker (yes, the
chess champion!) for polynomial rings and power series rings in 1905 [Las05], and then
extended to any noetherian ring (which were yet called that yet at the time) by Emmy
Noether in 1921 [Noe21].

Theorem 6.59 (Lasker, 1905, Noether, 1921). Every ideal in a noetherian ring admits a
primary decomposition.

Proof. We will say that an ideal is irreducible if it cannot be written as a proper intersection
of larger ideals. If R is noetherian, we claim that any ideal of R can be expressed as a
finite intersection of irreducible ideals. If the set of ideals that are not a finite intersection
of irreducibles were nonempty, then by noetherianity there would be an ideal maximal with
the property of not being an intersection of irreducible ideals. Such a maximal element must
be an intersection of two larger ideals, each of which are finite intersections of irreducibles,
giving a contradiction.
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We claim that every irreducible ideal is primary. If we show this, any decomposition
into an intersection of irreducible ideals will be a primary decomposition. To prove the
contrapositive, suppose that Q is not primary, and take xy ∈ Q with x /∈ Q, y /∈

√
Q. The

ascending chain of ideals

(Q : y) ⊆ (Q : y2) ⊆ (Q : y3) ⊆ · · ·

stabilizes for some n, since R is noetherian. Note that this means that for any element
f ∈ R, we have yn+1f ∈ Q =⇒ ynf ∈ Q. Using this, we will show that

(Q+ (yn)) ∩ (Q+ (x)) = Q,

proving that Q is not irreducible.
The containment Q ⊆ (Q+ (yn)) ∩ (Q+ (x)) is clear. On the other hand, if

a ∈ (Q+ (yn)) ∩ (Q+ (x)),

we can write a = q + byn for some q ∈ Q, and

a ∈ Q+ (x) =⇒ ay ∈ Q+ (xy) = Q.

So
byn+1 = ay − qy ∈ Q =⇒ b ∈ (Q : yn+1) = (Q : yn).

By definition, this means that byn ∈ Q, and thus a = q + byn ∈ Q. This shows that Q is
not irreducible, concluding the proof.

Primary decompositions, even irredundant ones, are not unique.

Example 6.60. Let R = k[x, y], where k is a field, and I = (x2, xy). We can write

I = (x) ∩ (x2, xy, y2) = (x) ∩ (x2, y).

These are two different irredundant primary decompositions of I. To check this, we just
need to see that each of the ideals (x2, xy, y2) and (x2, y) are primary. Observe that each
has radical m = (x, y), which is maximal, so by Lemma 6.51, these ideals are both primary.
In fact, our ideal I has infinitely many minimal primary decompositions: given any n > 1,

I = (x) ∩ (x2, xy, yn)

is an irredundant primary decomposition. One thing all of these have in common is the
radicals of the primary components: they are always (x) and (x, y).

In the previous example, the fact that the primes that appeared as radicals of the primary
components were always the same was not an accident. Indeed, there are some aspects of
primary decompositions that are unique, and this is one of them.
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Theorem 6.61 (First uniqueness theorem for primary decompositions). Suppose I is an
ideal in a noetherian ring R. Given any irredundant primary decomposition of I, say

I = Q1 ∩ · · · ∩Qt,

we have
{
√
Q1, . . . ,

√
Qt} = Ass(I).

In particular, this set is the same for all irredundant primary decompositions of I.

Proof. For any primary decomposition, irredundant or not, by Corollary 6.55 we have

Ass(I) ⊆
⋃
i

Ass(Qi) = {
√
Q1, . . . ,

√
Qt}.

We just need to show that in an irredundant decomposition as above, every Pj :=
√
Qj is

indeed an associated prime of I. So fix j, and let

Ij =
⋂
i 6=j

Qi ⊇ I.

Since the decomposition is irredundant, the module Ij/I is nonzero. By Theorem 6.27, Ij/I
has an associated prime, say a. Fix xj ∈ R such that a is the annihilator of xj + I in Ij/I
for some xj ∈ Ij. Since

Qjxj ⊆ Qj ·
⋂
i 6=j

Qi ⊆ Q1 ∩ · · · ∩Qn = I,

we conclude that Qj ⊆ ann(xj + I) = a. Since Pj is the unique minimal prime of Qj and
a is a prime containing Qj, we must have Pj ⊆ a. On the other hand, for any r ∈ a, we
have rxj ∈ I ⊆ Qj, and since xj /∈ Qj, we must have r ∈

√
Qj = Pj by the definition of

primary ideal. Thus a ⊆ Pj, so we can now conclude that a = Pj. This shows that Pj is an
associated prime of Ij/I for all j. But this is a submodule of R/I, and thus Pj is associated
to R/I.

{
√
Q1, . . . ,

√
Qt} = Ass(I).

There is also a partial uniqueness result for the actual primary ideals that occur in an
irredundant decomposition.

Theorem 6.62 (Second uniqueness theorem for primary decompositions). If I is an ideal in
a noetherian ring R, then the minimal components in any irredundant primary decomposition
of I are unique. More precisely, if

I = Q1 ∩ · · · ∩Qt

is an irredundant primary decomposition, and
√
Qi ∈ Min(I), then Qi is given by the formula

Qi = IR√Qi
∩R,

which does not depend on our choice of irredundant decomposition.
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Proof. Let Q be a primary ideal, and let P be any prime. If Q ⊆ P , then
√
Q ⊆ P . Since

the associated primes of an ideal localize well, by Theorem 6.38, QP will still have a unique
associated prime. Thus, the localization QP is either:

• the unit ideal, if Q 6⊆ P , or

• a primary ideal, if Q ⊆ P .

Finite intersections commute with localization, by Lemma 5.30, so for any prime P ,

IP = (Q1)P ∩ · · · ∩ (Qt)P

is a primary decomposition, although not necessarily irredundant. Fix a minimal prime
P = Pi of I, and let Q = Qi. When we localize at P , all the other components become
the unit ideal, since their radicals are not contained in P , and thus IP = QP . We can then
contract to R to get IP ∩R = (Qi)Pi

∩R = Qi, since Qi is Pi-primary and we can then apply
Theorem 6.50 (6).

If R is not noetherian, we may or may not have a primary decomposition for a given
ideal. It is true that if an ideal I in a general ring has a primary decomposition, then the
primes occurring are the same in any irredundant decomposition. However, they are not
the associated primes of I in general; rather, they are the primes that occur as radicals of
annihilators of elements.

Back to noetherian rings, is relatively easy to give a primary decomposition for a radical
ideal:

Example 6.63. If R is noetherian, and I is a radical ideal, then we have seen that I coincides
with the intersection of its minimal primes Pi, meaning I = P1 ∩ · · · ∩ Pt. This is the only
primary decomposition of a radical ideal.

For a more concrete example, take the ideal I = (xy, xz, yz) in k[x, y, z]. This ideal
is radical, so we just need to find its minimal primes. And indeed, one can check that
(xy, xz, yz) = (x, y) ∩ (x, z) ∩ (y, z). More generally, the radical monomial ideals are pre-
cisely those that are squarefree, and the primary components of a monomial ideal are also
monomial.

Example 6.64. Let’s get back to our motivating example in Z[
√
−5], where some elements

can be written as products of irreducible elements in more than one way. For example, we
saw that

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

So (6) = (2) ∩ (3), but while (2) is primary, (3) is not. In fact, (3) has two distinct minimal
primes, and the following is a minimal primary decomposition for (6):

(6) = (2) ∩ (3, 1 +
√
−5) ∩ (3, 1−

√
−5).

In fact, all of these come components are minimal, and so this primary decomposition is
unique. Primary decomposition saves the day!
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Finally, we note that the primary decompositions of powers of ideals are especially inter-
esting.

Definition 6.65 (Symbolic power). If P is a prime ideal in a ring R, the nth symbolic
power of P is P (n) := P nRP ∩R.

This admits equivalent characterizations.

Proposition 6.66. Let R be noetherian, and P a prime ideal of R.

a) P (n) = {r ∈ R | rs ∈ P n for some s /∈ P}.

b) P (n) is the unique smallest P -primary ideal containing P n.

c) P (n) is the P -primary component in any minimal primary decomposition of P n.

Proof. The first characterization follows from the definition, and the fact that expanding
and contraction to/from a localization is equivalent to saturating with respect to the multi-
plicative set, which we proved in Lemma 5.14.

We know that P (n) is P -primary from one of the characterizations of primary we gave
in Theorem 6.50. Any P -primary ideal satisfies qRP ∩ R = q, and if q ⊇ P n, then P (n) =
P nRP ∩R ⊆ qRP ∩R = q. Thus, P (n) is the unique smallest P -primary ideal containing P n.

The last characterization follows from the second uniqueness theorem, Theorem 6.62.

In particular, note that P n = P (n) if and only if P n is primary.

Example 6.67.

a) In R = k[x, y, z], the prime P = (y, z) satisfies P (n) = P n for all n. This follows along
the same lines as Example 6.47 d.

b) In R = k[x, y, z]/(xy − zn), where n > 2, we have seen in Example 6.52 that the square
of P = (y, z) is not primary, and therefore P (2) 6= P 2. Indeed, xy = zn ∈ P 2, and x /∈ P ,
so y ∈ P (2) but y /∈ P 2.

c) Let X = X3×3 be a 3× 3 matrix of indeterminates, and k[X] be a polynomial ring over
a field k. Let P = I2(X) be the ideal generated by 2× 2 minors of X. Write ∆i|k

j|l
for the

determinant of the submatrix with rows i, j and columns k, l. We find

x11 det(X) =x11x31∆1|2
2|3
− x11x32∆1|1

2|3
+ x11x33∆1|1

2|2

= (x11x31∆1|2
2|3
− x11x32∆1|1

2|3
+ x11x33∆1|1

2|2
)

− (x11x31∆1|2
2|3
− x12x31∆1|1

2|3
+ x13x31∆1|1

2|2
)

= −∆1|1
3|2

∆1|1
2|3

+ ∆1|1
3|3

∆1|1
2|2
∈ I2(X)2.

Note that in the second row, we subtracted the Laplace expansion of the determinant of
the matrix with row 3 replaced by another copy of row 1. That is, we subtracted zero.
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While we will not discuss symbolic powers in detail, they are ubiquitous in commutative
algebra. They show up as tools to prove various important theorems of different flavors, and
they are also interesting objects in their own right. In particular, symbolic powers can be
interpreted from a geometric perspective, via the Zariski–Nagata Theorem [Zar49, NM91].
Roughly, this theorem says that when we consider symbolic powers of prime ideals over
C[x1, . . . , xd], the polynomials in P (n) are precisely the polynomials that vanish to order n
on the variety corresponding to P . This result can be made sense of more generally, for any
radical ideal in C[x1, . . . , xd] over any perfect field k [EH79, FMS14], and even when k = Z
[DSGJ20].

6.4 The Krull Intersection Theorem

Theorem 6.68 (Krull Intersection Theorem for domains). If R is a domain or a local ring,
then ⋂

n>1

In = 0.

for any proper ideal I in R.



Chapter 7

Dimension theory: a global
perspective

7.1 Dimension and height

We will now spend a while discussing the notion of dimension of a ring and dimension of a
variety. To motivate the definition, let’s first think in terms of varieties.

We take our inspiration from the fundamental setting of dimension theory: vector spaces.
The notion of basis doesn’t make sense for varieties (What does it mean to span? Where
is zero?), but one relevant thing we do have for both vector spaces and for varieties is
subobjects.

One way to characterize the dimension of a vector space V is the the largest number d
such that there is a proper chain of subspaces

{0} = V0 ( V1 ( V2 ( · · · ( Vd = V.

We can try something similar for varieties, but for a reducible variety, this is not a very
good notion. For example, for a union of m points, we can cook up a chain of m proper
subvarieties by adding one more point each time, but a point should be zero-dimensional by
any reasonable measure. So, if we want this approach to work, we should stick to chains of
irreducible subvarieties.

Definition 7.1. The dimension of an affine variety X is defined as

sup{d | ∃ a strictly decreasing chain of irreducible subvarieties of X: Xd ) Xd−1 ) · · · ) X0}.

Over an algebraically closed field k, this information of chains of subvarieties can be
translated into information about primes in the coordinate ring: a strictly increasing chain
of irreducible subvarieties

Xd ) Xd−1 ) · · · ) X0

corresponds to strictly increasing chain of prime ideals

P0 ( P1 ( · · · ( Pd

in the coordinate ring k[X].

93
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Definition 7.2. The Krull dimension of a ring R is

dim(R) := sup{d | ∃ a strictly increasing chain of prime ideals P0 ( · · · ( Pd}.

We often call it simply the dimension of R. A strict chain of primes

P0 ( · · · ( Pd

has length d. Such a chain is saturated if for each i there is no prime Q with Pi ( Q ( Pi+1.
So dim(R) is the supremum of the lengths of saturated chains of primes of R.

The height of a prime ideal P in a ring R is the supremum of the lengths of (saturated)
chains of primes in R that end in P :

height(P ) := sup{h | ∃ a strictly increasing chain of prime ideals Q0 ( · · · ( Qh = P}.

The height of an ideal I is the infimum of the heights of the primes containing I:

height(I) := inf{height(P ) | P ∈ V (I)} = inf{height(P ) | P ∈ Min(I)}.

Definition 7.3. The dimension of an R-module M is defined as dim(R/ annR(M)).

Note that if M is finitely generated, dim(M) is the same as the supremum of the lengths
of chains of primes in SuppR(M).

Example 7.4. a) The dimension of any field is zero.

b) A ring is zero-dimensional if and only if every minimal prime of R is a maximal ideal.

c) The ring of integers Z has dimension 1, since there is one minimal prime (0) and every
other prime is maximal. Likewise, any PID that is not a field has dimension one.

d) It follows from the definition that if k is a field, then

dim(k[x1, . . . , xd]) > d,

since there is a saturated chain of primes

(0) ( (x1) ( (x1, x2) ( · · · ( (x1, . . . , xd).

When d = 1, the ring k[x] is a PID, and thus it has dimension 1.

We will later show that dim(k[x1, . . . , xd]) = d, which should match our expectation that
Ad has dimension d. However, we are not yet ready to prove this.

Lemma 7.5. Let R be a ring and I be an ideal in R. If R is a UFD, I is a prime of height
one if and only if I = (f) for a prime element f .

Proof. If I = (f) with f irreducible, and 0 ( P ⊆ I, then P contains some nonzero multiple
of f , say afn with a and f coprime. Since a /∈ I, a /∈ P , so we must have f ∈ P , so P = (f).
Thus, I has height one. On the other hand, if I is a prime of height one, we claim I contains
an irreducible element. Indeed, I is nonzero, so contains some f 6= 0, and primeness implies
one of the prime factors of f is contained in I. Thus, any nonzero prime contains a prime
ideal of the form (f), so a height one prime must be of this form.
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Be warned that there are rings that are not noetherian but have finite Krull dimension,
and infinite-dimensional noetherian rings.

Example 7.6. For a field k, the ring R = k[x1, x2, . . . ]/(x
2
1, x

2
2, . . . ) is not noetherian, as

(x1) ( (x1, x2) ( (x1, x2, x3) ( · · ·

is an infinite ascending chain, so R is not noetherian. However,
√

(0) = (x1, x2, . . . ) is
a maximal ideal, and hence (x1, x2, . . . ) is the unique minimal prime of R, which is also
maximal. Therefore, dim(R) = 0.

It is a lot harder to give examples of noetherian rings of infinite dimension, but they do
exist. The famous example below is due to Nagata.

Example 7.7 (Nagata). Let R = k[x11, x21, x22, x31, x32, x33, . . .] be a polynomial ring in
infinitely many variables, which we are thinking of as arranged in an infinite triangle. R is
clearly infinite-dimensional and not noetherian. Let

W = R \
(
(x11) ∪ (x21, x22) ∪ (x31, x32, x33) ∪ · · ·

)
=
⋂
n>1

(
R \ (xn1, . . . , xnn)

)
and S = W−1R. Note that W is an intersection of multiplicatively closed subsets, so this is
a valid localization of R. For any n, we have a chain of primes

(xn1) ( (xn1, xn2) ( · · · ( (xn1, . . . , xnn)

in R. As these primes are all contained in (xn1, . . . , xnn), none of these intersects W , so
the expansion to S of the chain above yields a proper chain of primes in S. It follows that
dim(S) > n for all n > 1, so S is infinite-dimensional.

It turns out that S is noetherian, which is not at all obvious and a bit technical, so we
will not prove it.

Lemma 7.8 (Properties of dimension and height). Let R be a ring.

(1) A prime has height zero if and only if it is a minimal prime of R.

(2) An ideal has height zero if and only if it is contained in a minimal prime of R. In
particular, in a domain, every nonzero ideal has positive height.

(3) dim(R) = sup{dim(R/P ) | P ∈ Spec(R)} = sup{dim(R/P ) | P ∈ Min(R)}.

(4) dim(R) = sup{height(P ) | P ∈ Spec(R)} = sup{height(Q) | Q ∈ mSpec(R)}.

(5) If I is an ideal, then dim(R/I) = sup{n | ∃P0 ( P1 ( · · · ( Pn, Pi ∈ V (I)}.

(6) If P is prime,
dim(R/P ) + height(P ) 6 dim(R).

(7) If I is an ideal,
dim(R/I) + height(I) 6 dim(R).
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(8) If W is a multiplicative set, then dim(W−1R) 6 dim(R).

(9) If P is prime, then height(P ) = dim(RP ).

(10) If P ⊆ Q are primes, then dim(RQ/PRQ) is the supremum of the lengths of (saturated)
chains of primes in R of the form P = P0 ( P1 ( · · · ( Pn = Q.

Proof. We will prove some of these and leave the rest as an exercise.

(1) A prime has height 0 if and only if it contains no other prime, which is equivalent being
a minimal prime of R.

(2) If I is contained in a minimal prime Q of R, then height(Q) = 0 by (1), so height(I) = 0
by definition. Conversely, if height(I) = 0, by definition, there is a minimal prime of I
of height 0, so some minimal prime of I is a minimal prime of R, so I is contained in a
minimal prime of R.

(6) It suffices to show that if dim(R/P ) > a and height(P ) > b then dim(R) > a + b. By
definition, height(P ) > b means that there is a chain of primes

Q0 ( Q1 ( · · · ( Qb = P.

By (5), dim(R/P ) > a means that there is a chain of primes

a0 ( a1 ( · · · ( aa

with a0 ⊇ P . We can assume without loss of generality that a0 = P , since if not, we
can add it to the bottom of the chain. Putting these chains together, we get a chain of
length a+ b in Spec(R), so dim(R) > a+ b.

(7) Let dim(R/I) > a and height(I) > b. The inequality height(I) > b means that for every
minimal prime P of I, height(P ) > b. The inequality dim(R/I) > a implies that there
exists a minimal prime of P of I such that dim(R/P ) > a. For such a minimal prime as
in the latter statement, using (5), we get the desired conclusion.

Exercise 17. Prove (3)–(5) and (8)–(10) in Lemma 7.8.

Remark 7.9. We know that in noetherian rings, there can be arbitrarily long chains of
primes, since the dimension can be infinite as in Nagata’s Example 7.7. On the other hand,
any ascending proper chain of primes is finite, as a consequence of the definition. Does this
imply that every prime has finite height? This does not prevent that possibility that there
could be an infinite descending chain of primes, which would then give any of the primes
in the chain infinite height. (This seems strange in conjunction with the fact that in any
ring, any prime contains a minimal prime, but it does not contradict this.) Another possible
problem is there being two primes P ⊆ Q such that for all n > 1 there exists a chain of
primes of length n from P to Q.

However, we will later show that the height of any ideal in a noetherian ring is finite.
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Exercise 18. Let R ⊆ S be an integral extension of domains. Show that every nonzero
s ∈ S has a nonzero multiple in R, meaning that there exists t ∈ S such that ts 6= 0 and
ts ∈ R.

Example 7.10. Let k be an infinite field and R = k[t3, t4, t5]. We have shown that

R ∼=
k[x, y, z]

(x3 − yz, y2 − xz, z2 − x2y)
,

and that R is the coordinate ring of the curve

X = {(t3, t4, t5) |t ∈ k}.

As X is a curve (meaning it is parameterized by a single parameter), we should expect the
dimension of the variety X, and equivalently of the ring R, to be 1. Let’s prove this.

On the one hand, R is a domain, so (0) is the unique minimal prime. To show that
dim(R) = 1, we need to show that any nonzero prime ideal is maximal.

Set S = k[t3] ⊆ R. We note that t3 does not satisfy any algebraic relation over k, so S is
isomorphic to a polynomial ring in one variable, where that one variable corresponds to t3.
Moreover, note that the inclusion S ⊆ R is integral, since t4 satisfies the monic polynomial
(T 4)3 − (t3)4 = 0 and t5 satisfies the monic polynomial (T 5)3 − (t3)5 = 0. Polynomial rings
in one variable have dimension 1, so dim(S) = 1.

Let P ∈ Spec(R) be nonzero. Note first that P ∩ S 6= 0, since if f ∈ P , then there is
some nonzero multiple of f in S by Exercise 18. Since dim(S) = 1, P ∩ S is maximal. The
inclusion

S

P ∩ S
↪→ R

P
is integral: a dependence relation for any representative yields a dependence relation. Since
S

P∩S is a field, R
P

is a domain, and the inclusion is integral, by Theorem 1.41 we can conclude
that R/P is a field, so P is a maximal ideal. This shows that every nonzero prime in R is
maximal, and thus dim(R) = 1.

Definition 7.11. A ring is catenary if for every pair of primes Q ⊇ P , every saturated
chain of primes has the same length. A ring is equidimensional if every maximal ideal has
the same finite height, and every minimal prime has the same dimension.

It is difficult to come up with examples of rings that are not catenary, but they do exist.
Nagata gave the first example of a noetherian noncatenary ring. Here are some examples of
what can go wrong.

Example 7.12. Consider the ring

R =
k[x, y, z]

(xy, xz)
.

We can find the minimal primes of R by computing Min((xy, xz)) in k[x, y, z]. The prime
ideals (x) and (y, z) are incomparable, and (x)∩ (y, z) = (xy, xz), so Min(R) = {(x), (y, z)}.
We claim that the height of (x−1, y, z) is one: it contains the minimal prime (y, z), and any
saturated chain from (y, z) to (x−1, y, z) corresponds to a saturated chain from (0) to (x−1)
in k[x], which must have length 1 since this is a PID. The height of (x, y − 1, z) is at least
2, as witnessed by the chain (x) ⊆ (x, y − 1) ⊆ (x, y − 1, z). So R is not equidimensional.
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Here is an example which shows that the inequality dim(R/I) + height(I) 6 dim(R) can
fail to be an equality, and that domains may fail to be equidimensional.

Example 7.13. The ring Z(2)[x] is a domain that is not equidimensional. On the one hand,
the maximal ideal (2, x) has height at least two, which we see from the chain

(0) ( (x) ⊆ (x, 2).

Thus dim(R) > 2. On the other hand, we will show later that the prime ideal P = (2x− 1)
has height 1, and it is maximal since R/P ∼= Q. Therefore, dim(R/P ) = 0, and thus

dim(R/P ) + height(P ) = 1

whereas dimR > 2.
The ring R in this example is in fact a catenary domain, which we will not justify. Notice

that there are maximal ideals of distinct heights in this ring, for example the ideal P given
above is a prime of height 1 whereas and the maximal ideal m = (2, x) has height 2. Thus
this ring is not equidimensional.

7.2 Over, up, and down

In this section, we will collect theorems about the spectrum of a ring: theorems that assert
that the map on Spec is surjective, and theorems about lifting chains of primes. Given a
ring homomorphism R→ S, we want to study the behavior of chains of primes: how chains
in R behave under expansion to S and how chains in S behave under contraction to R.

It will be convenient to think in terms of fibers.

Definition 7.14. For a map of topological spaces f : X → Y and y ∈ Y , the fiber over y
is the subspace

f−1(y) = {x ∈ X | f(x) = y} ⊆ X.

Note that if f is continuous and y ∈ Y is a closed point, then f−1(y) ⊆ X is closed.

Definition 7.15. Let ψ : R → S be a ring homomorphism and P ∈ Spec(R). The fiber
ring of ψ over P is

κψ(P ) := (R \ P )−1(S/PS),

where by abuse of notation we write R \ P for the image of R \ P in S, and PS for ψ(P )S.

In the special case when m is a maximal ideal in R, S/mS is an R/m-module, meaning
a vector space over the field R/m, so every element of R \m acts as a unit on S/mS. Thus
the localization is redundant, and

κψ(m) = S/mS.

For the identity map, we simply write

κ(P ) := RP/PRP .

The point of this definition is the following.
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Lemma 7.16. Let ψ : R→ S be a ring homomorphism and P ∈ Spec(R) be a prime ideal.
The natural map S → κψ(P ) induces a homeomorphism (in particular, an order-preserving
bijection)

Spec(κψ(P )) ∼= {Q ∈ Spec(S) | ψ∗(Q) = P},
where the right-hand side has the subspace topology induced by the Zariski topology on
Spec(S).

Proof. Consider the maps S π // S/PS
g
// (R \ P )−1(S/PS) . For any localization map

or any quotient map, the induced map on Spec is a homeomorphism onto its image. The
map on spectra induced by π can be identified with the inclusion of V (PS) into Spec(S).
For the second map, g, we saw in Lemma 5.14 that the map on spectra can be identified with
the inclusion of the set of primes that do not intersect R \ P , i.e., those whose contraction
is contained in P . Therefore, (g ◦ π)∗ is injective, since it is the composition of two injective
maps.

On the one hand, if a prime Q contains PS, then Q ∩ R ⊇ PS ∩ R ⊇ P . If moreover
Q∩R ⊆ P , we must have Q∩R = P . We have thus shown that the image of (g ◦ π)∗ is the
set of primes in S that contract to P .

We have seen that taking IS ∩R does not always recover the ideal I. When I is a prime
ideal, we can characterize this in terms of the induced map on Spec.

Lemma 7.17 (Image criterion). Let R
ϕ−→ S be a ring homomorphism. For any P ∈ Spec(R),

P ∈ im(ϕ∗) if and only if
PS ∩R = P.

Proof. If PS ∩R = P , then
R

P
=

R

PS ∩R
↪→ S

PS
,

so localizing at (R \ P ), we get an inclusion κ(P ) ⊆ κϕ(P ). Since κ(P ) is nonzero, so is
κϕ(P ), and thus its spectrum is nonempty. By Lemma 7.16, there is a prime mapping to P .

If PS ∩ R 6= P , then PS ∩ R ) P . If Q ∩ R = P , then Q ⊇ PS, so Q ∩ R ) P . So no
prime contracts to P .

Note that PS may not be prime, in general.

Example 7.18. Let R = C[xn] ⊆ S = C[x]. The ideal xnR is prime, while xnS is not even
radical. Nevertheless, xnS ∩R = (x) ∩R = xnR.

Example 7.19. Consider the inclusion R := k[xy, xz, yz] �
� ϕ

// S := k[x, y, z] and the prime

P = (xy) in R. Notice that (xz)(yz) ∈ PS ∩ R, but not in P , so PS ∩ R ) P , and thus
P /∈ im(ϕ∗). We can check this more directly, by noting that any prime Q in S contracting
to P would contain PS = (x)∩ (y), so Q ⊇ (x) or Q ⊇ (y). But (x)∩R = (xy, xz) ) P and
(y) ∩R = (xy, yz) ) P , so no prime in S contracts to P .

Corollary 7.20. If R ⊆ S is a direct summand, the map Spec(S)→ Spec(R) is surjective.

Proof. By Lemma 2.20, we know IS ∩R = I for all ideals in this case, so Lemma 7.17 says
the map on Spec is surjective.
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We want to extend the idea of the last corollary to work for all integral extensions.

Definition 7.21. Let R be a ring, S an R-algebra, and I an ideal. An element r of R is
integral over I if it satisfies an equation of the form

rn + a1r
n−1 + · · ·+ an−1r + an = 0 with ai ∈ I i for all i.

An element of S is integral over I if

sn + a1s
n−1 + · · ·+ an−1s+ an = 0 with ai ∈ I i for all i.

The integral closure of I in R is the set of elements of R that are integral over I, denoted

I. Similarly, we write I
S

for the integral closure of I in S.

The convention is that I0 = R for any ideal I of R.

Remark 7.22. Notice that I
S ∩R = I is immediate from the definition.

Exercise 19. Let R ⊆ S, I be an ideal of S, and t be an indeterminate. Consider the rings
R[It] ⊆ R[t] ⊆ S[t]. Here R[It] is the subalgebra of R[t] generated by elements of the form
at for all a ∈ I. Notice that we can give this a structure of a graded ring by setting all
elements in R to have degree 0 and t to have degree 1, so

R[It] =
⊕
n>0

Intn.

This is usually called the Rees algebra of I.

a) I
S

= {s ∈ S | st ∈ S[t] is integral over the ring R[It]}.

b) I
S

is an ideal of S.

In older texts and papers (e.g., Atiyah–Macdonald [AM69] and [Kun69]) a different defi-
nition is given for integral closure of an ideal. The one we use here is now the more universally
used notion.

Lemma 7.23 (Extension–contraction lemma for integral extensions). Let R ⊆ S be integral,

and I be an ideal of R. Then IS ⊆ I
S

, and hence IS ∩R ⊆ I.

Proof. Let x ∈ IS. We can write x = a1s1 + · · · + atst for some ai ∈ I. Moreover, taking

S ′ = R[s1, . . . , st], we also have x ∈ IS ′. We will show that x ∈ I
S′

, so x ∈ I
S

follows
as a corollary. So we might as well replace S with S ′, so that R ⊆ S is also integral and
module-finite. By Corollary 1.36, the extension is also module-finite.

Let S = Rb1 + · · ·+Rbn. We can write

xbi =

(
t∑

k=1

aksk

)
bi =

∑
j

aijbj
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with aij ∈ I. We can write these equations in the form xv = Av, where v = (b1, . . . , bu), and
A = [aij]. By the determinantal trick, Lemma 1.34, we have det(xI − A)v = 0. Since we
can assume b1 = 1, we have det(xI − A) = 0. The fact that this is the type of equation we
want follows from the monomial expansion of the determinant: any monomial is a product
of n terms where some of them are copies of x, and the rest are elements of I. Since this is
a product of n terms, a term in xi has a coefficient coming from a product of n− i elements
of I.

So this shows that IS ⊆ I
S
. Now notice that I

S∩R = I is immediate from the definition,
as noted in Remark 7.22.

Theorem 7.24 (Lying over). If R ⊆ S is an integral extension, then PS ∩R = P for every
P ∈ Spec(R), and the induced map Spec(S) −→ Spec(R) is surjective.

Proof. Let I be any ideal in R. Given any r ∈ I, we have

rn + a1r
n−1 + · · ·+ an−1r + an = 0

for some n and some ai ∈ I i for all i, so

rn = −a1r
n−1 − · · · − an−1r − an ∈ I.

Thus I ⊆
√
I. Therefore, if P is a prime in R, by Lemma 7.23 we have PS ∩R ⊆ P , and

PS ∩R ⊆ P ⊆
√
P = P.

Then PS ∩ R = P , and by Lemma 7.17 we conclude that P is in the image of the map on
Spec.

Both assumptions that the extension is integral and that it is an inclusion are needed
in Theorem 7.24; we cannot reduce to the case of an integral inclusion. The point is that
R→ S being an inclusion does not translate into a property of the induced map on Spec.

Example 7.25. We saw in Example 7.19 that the map induced on Spec by the inclusion
k[xy, xz, yz] ⊆ k[x, y, z] is not surjective. So Theorem 7.24 does not apply — indeed, this
inclusion is not module-finite, and thus by Theorem 1.35 it is not integral. For example, the
infinite set {1, xn, yn, zn | n > 1} is a minimal generating set for k[x, y, z] over k[xy, xz, yz].

Example 7.26. Suppose f is a regular element on R, but not a unit. Since f is regular, the
map R −→ Rf is an inclusion, but we claim it is not integral. If 1

f
is integral over R, there

would be ai ∈ R such that

1

fn
+
an−1

fn−1
+ · · ·+ a1

f
+ a0 = 0.

After multiplying by fn all terms are of the form r
1
, and thus in R, since the localization

map is injective. So

1 = −(an−1f + · · ·+ a1f
n−1 + a0f

n) ∈ (f),

and f must be a unit. So whenever f is a regular element but not a unit, R −→ Rf is an
example of an inclusion that is not integral. Note that the image of the map on Spec is the
complement of V (f), so in particular the map is not surjective.

In contrast, the map R −→ R/(f) is integral, since it is module-finite, but it is not an
inclusion. The map on Spec is again not surjective: its image is V (f).
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Remark 7.27. Let I be an ideal in S. Suppose R→ S is an integral extension. There is an
induced map R/(I∩R)→ S/I, and that map is integral: an equation of integral dependence
for s ∈ S over R gives an equation for integral dependence of its class in S/I over R/(I ∩R).

Recall that we showed in Theorem 1.41 that if R ⊆ S is an integral extension of domains,
R is a field if and only S is a field.

Lemma 7.28. If R
ϕ
// S is integral, Q∩R is maximal if and only if Q is maximal in S.

Proof. By Remark 7.27, the induced map R/(Q ∩ R) ⊆ S/Q is an integral extension of
domains, and Q (respectively, Q∩R) is maximal if and only if S/Q (respectively, R/(Q∩R))
is a field. So this follows by Theorem 1.41.

Lemma 7.29. Let R → S be integral, and let W be a multiplicatively closed subset of R.
Then W−1R→ W−1S is integral.

Proof. Since W is a multiplicatively closed subset of R, its image in S is also multiplicatively
closed. Given x ∈ S and w ∈ W , then we have equations of the form

xn + r1x
n−1 + · · ·+ rn = 0 =⇒

( x
w

)n
+
r1

w

( x
w

)n−1

+ · · ·+ rn
wn

= 0.

Thus x
w

is integral over W−1S, and S is integral over R.

The Incomparability Theorem says if S is integral over R, then any two primes in S
contracting to the same prime in R must be incomparable.

Theorem 7.30 (Incomparability). If R −→ S is integral and P ⊆ Q are primes in S that
satisfy P ∩R = Q ∩R, then P = Q.

Proof. In this case we can reduce to the case of an inclusion: f : R → S factors through
R/ ker f , and the map induced on Spec factors as

Spec(S) −→ Spec(R) = Spec(S) −→ Spec(R/ ker f) −→ Spec(R).

Since the map on spectra induced by R −→ R/ ker(f) is injective, we can replace R by the
quotient and assume ϕ is an integral inclusion.

So suppose R ⊆ S is integral, and let a = P ∩R = Q∩R. By Lemma 7.29, localizing at
(R \ a) preserves integrality. By localizing R at (R \ a), the image of a is a maximal ideal.
So we can reduce to the situation where P ∩R = Q∩R is a maximal ideal. By Lemma 7.28,
P ⊆ Q are both maximal ideals. Therefore, P = Q.

Corollary 7.31. Let S be an integral R-algebra. If S is noetherian, then only finitely many
primes contract to each P ∈ Spec(R).

Proof. If Q′ ∈ Spec(S) contracts to P , then Q′ ⊇ PS, so in particular Q′ contains some
prime Q minimal over PS. Then

PS ⊆ Q ⊆ Q′ =⇒ P ⊆ Q ∩R ⊆ Q′ ∩R = P,

so Q′ ∩ R = Q ∩ R. By Incomparability, Q = Q′. So all the primes contracting to P are in
Min(PS), which is a finite set since R is noetherian, by Theorem 6.5.
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Corollary 7.32. If R −→ S is integral, then for any Q ∈ Spec(S) we have

height(Q) 6 height(Q ∩R)

In particular, dim(S) 6 dim(R).

Proof. Given a chain of primes P0 ( · · · ( Pn = Q in Spec(S), we can contract to R, and
by Incomparability we get a chain of distinct primes in Spec(R).

We will now prove two important theorems known as Going up and Going down, which
in pictures say the following:

Going up:

Q Q ⊆ Q′
∃Q′

//

P
⊆

⊆ P ′ P

⊆

⊆ P ′

⊆

Going down:

Q′ Q ⊆ Q′

∃P //

P ⊆ P ′

⊆

P

⊆

⊆ P ′

⊆

Theorem 7.33 (Going up). If R −→ S is integral, then for every P ( P ′ in Spec(R) and
Q ∈ Spec(S) with Q ∩R = P , there is some Q′ ∈ Spec(S) with Q ( Q′ and Q′ ∩R = P ′.

Proof. Consider the map R/P → S/Q. This is integral, as we observed in Remark 7.27. It
is also injective, so Lying Over applies. Thus, there is a prime a of S/Q that contracts to
the prime P ′/P in Spec(R/P ). We can write a = Q′/Q for some Q′ ∈ Spec(S), and we must
have that Q′ contracts to P ′.

Corollary 7.34. If R ⊆ S is integral, then dim(R) = dim(S).

Proof. We have already shown that dim(S) 6 dim(R) in Corollary 7.32, so we just need to
show that dim(R) 6 dim(S). Fix a chain of primes P0 ( · · · ( Pn in Spec(R). By Lying
Over, Theorem 7.24, there is a prime Q0 ∈ Spec(S) contracting to P0. Then by Going up,
Theorem 7.33, we have Q0 ( Q1 with Q1 ∩ R = P1. Continuing, we can build a chain of
distinct primes in S of length n. So dim(R) 6 dim(S), and equality follows.

Lemma 7.35. Let R be a normal domain and let x be an element in some larger domain
that is integral over R. Let k be the fraction field of R, and f(t) ∈ k[t] be the minimal
polynomial of x over k.

a) If x is integral over R, then f(t) ∈ R[t] ⊆ k[t].

b) If x is integral over a prime P , then f(t) has all of its nonleading coefficients in P .

Proof. Let x be integral over R. Fix an algebraic closure of k containing x, and let x1 = x,
x2, . . . , xu be the roots of f . Since f(t) divides any polynomial with coefficients in k that
x satisfies, it also divides a monic equation of integral dependence for x over R. Therefore,
each xi is a solution to such an equation of integral dependence, and thus must be integral
over R.
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Let S = R[x1, . . . , xu] ⊆ k. This is a module-finite extension of R, so all of its elements
are integral over R. The leading coefficient of f(t) is 1, and the remaining coefficients of f(t)
are polynomials in the xi, hence they lie in S. On the other hand, R is normal, so S∩k = R.
We conclude that all the coefficients of f are in R, and f ∈ R[t].

Now let x be integral over P . By the same argument as above, all of the xi are integral

over P . Since each xi ∈ P
S
, any polynomial in the xi lies in P

S
. So the nonleading coefficients

of f lie in P
S ∩R = P , by Theorem 7.24.

Theorem 7.36 (Going down). Suppose that R is a normal domain, S is a domain, and
R ⊆ S is integral. Then, for every P ( P ′ in Spec(R) and Q′ in Spec(S) with Q′ ∩R = P ′,
there is some Q ∈ Spec(S) with Q ( Q′ and Q ∩R = P .

Proof. Let W = (S \ Q′)(R \ P ) be the multiplicative set in S consisting of products of
elements in S \ Q′ and R \ P . Note that each of the sets S \ Q′ and R \ P contains 1, so
S \Q′ and R \P are both contained in W . We will show that W ∩PS is empty. Once we do
that, it will follow from Lemma 3.25 that there is a prime ideal Q in S containing PS such
that W ∩Q is empty. Since S \Q′ ⊆ W , our new prime Q must necessarily be contained in
Q′. Moreover, R \P ⊆ W , so (Q∩R)∩ (R \P ) is empty, or equivalently, Q∩R ⊆ P . Since
Q ∩R ⊆ P and Q ∩R ⊇ P , we conclude that Q ∩R = P .

So our goal is to show that W ∩ PS is empty. We proceed by contradiction, and assume
there is some x ∈ PS∩W . We can write x = rs for some r ∈ R\P and s ∈ S\Q′. Moreover,
since x ∈ PS, x is integral over P , by Lemma 7.23.

Consider the minimal polynomial of x over frac(R), say

h(x) = xn + a1x
n−1 + · · ·+ an = 0.

By Lemma 7.35, each ai ∈ P ′ ⊆ R. Then substituting x = rs in frac(R) and dividing by rn

yields

g(s) = sn +
a1

r
sn−1 + · · ·+ an

rn
= 0.

We claim that this is the minimal polynomial of s. If s satisfied a monic polynomial of degree
d < n, multiplying by rd would give us a polynomial of degree d that x satisfies, which is
impossible. So indeed, this is the minimal polynomial of s.

Since s ∈ S, and thus integral over R, Lemma 7.35 says that each ai
ri

=: vi ∈ R. Since
r /∈ P and rivi = ai ∈ P , we must have vi ∈ P . The equation g(s) = 0 then shows that
s ∈
√
PS. Since Q′ ∈ Spec(S) contains P ′S and hence PS, we have s ∈

√
PS ⊆ Q′. This is

the desired contradiction, since s /∈ Q′ by construction.

Corollary 7.37. If R is a normal domain, S is a domain, and R ⊆ S is integral, then
height(Q) = height(Q ∩R) for any Q ∈ Spec(S).

Proof. We already know from Corollary 7.32 that height(Q) 6 height(Q∩R). To show that
height(Q) > height(Q∩R), given a saturated chain up to Q∩R, we can apply Going Down
to get a chain just as long that goes up to Q.
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7.3 Noether normalizations

Lemma 7.38 (Making a pure-power leading term). Let A be a domain, R = A[x1, . . . , xn],
and let f ∈ R be a polynomial of degree at most N . The A-algebra automorphism of R given
by

φ(xi) = xi + xN
n−i

n for i < n and φ(xn) = xn

maps f to a polynomial that, viewed as a polynomial in xn with coefficients in A[x1, . . . , xn−1],
has leading term dxan for some d ∈ A and a ∈ N.

Proof. The map φ sends a monomial term dxa11 · · ·xann to a polynomial with unique highest
degree term dxa1N

n−1+a2Nn−2+···+an−1N+an
n . For each of the monomials dxa11 · · ·xann in f with

nonzero coefficient d 6= 0, we must have each ai 6 N , so the map

(a1, . . . , an) 7→ a1N
n−1 + a2N

n−2 + · · ·+ an−1N + an

is injective when restricted to the set of exponent tuples of f . Therefore, none of the terms
can cancel. We find that the leading term is of the promised form.

Lemma 7.39 (Making a pure-power leading term: graded version). Let k be an infinite
field, and let R = k[x1, . . . , xn] be standard graded, meaning deg(xi) = 1. Let f ∈ R be a
homogeneous polynomial of degree N . There is a degree-preserving k-algebra automorphism
of R given by φ(xi) = xi + aixn for i < n and φ(xn) = xn that maps f to a polynomial that
viewed as a polynomial in xn with coefficients in k[x1, . . . , xn−1], has leading term axNn for
some (nonzero) a ∈ k.

Proof. Given Lemma 7.38, we just need to show that the xN coefficient of φ(f) is nonzero for
some choice of ai. One can check that the coefficient of the xN term is f(−a1, . . . ,−an−1, 1).
But f(−a1, . . . ,−an−1, 1), when thought of as a polynomial in the ai, is identically zero, then
f must be the zero polynomial.

Theorem 7.40 (Noether Normalization). Let A be a domain, and R be a finitely generated
A-algebra. There is some nonzero a ∈ A and x1, . . . , xt ∈ R algebraically independent over
A such that Ra is module-finite over Aa[x1, . . . , xt].

In particular, if k is a field and R is a finitely generated k-algebra, then there exist
x1, . . . , xt ∈ R algebraically independent over k such that k[x1, . . . , xt] ⊆ R is module-finite.

Proof. We proceed by induction on the number of algebra generators n of R over A. There
is nothing to prove in the case when n = 0.

Now suppose that we know the result holds for A-algebras generated by at most n − 1
elements, and let R = A[r1, . . . , rn]. If r1, . . . , rn are algebraically independent over A, we
are done: R is module-finite over R = A[r1, . . . , rn]. If not, there is some algebraic relation
among the generators r1, . . . , rn, meaning there exists f(x1, . . . , xn) ∈ A[x1, . . . , xn] such
that f(r1, . . . , rn) = 0. After possibly applying Lemma 7.38 to change our choice of algebra
generators, we can assume that f has leading term axNn for some a. Then f is monic in
xn after inverting a, so rn is integral over Aa[r1, . . . , rn−1], and thus Ra is module-finite
over Aa[r1, . . . , rn−1] by Corollary 1.36. By hypothesis, Aab[r1, . . . , rn−1] is module-finite over
Aab[x1, . . . , xs] for some b ∈ A and x1, . . . , xs that are algebraically independent over A.
Since Rab is module-finite over Aab[r1, . . . , rn−1], then Rab must also be module-finite over
Aab[x1, . . . , xs] by Remark 1.24, and we are done.
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Definition 7.41. Let R be a finitely generated algebra for some field k. Then a Noether
normalization of R is a polynomial ring A = k[x1, . . . , xt] ⊆ R such that x1, . . . , xt are
algebraically independent over k and R is module-finite over A.

Theorem 7.42 (Graded Noether Normalization). Let k be an infinite field, and R be a
finitely generated N-graded k-algebra with R0 = k and R = k[R1]. There are homogeneous
elements x1, . . . , xt ∈ R1 algebraically independent over k such that R is module-finite over
k[x1, . . . , xt].

Proof. We repeat the proof of Theorem 7.40 but use Lemma 7.39 in place of Lemma 7.38.

Remark 7.43. There also exist Noether normalizations for quotients of power series rings
over fields: the key change is that after a change of coordinates, one can rewrite any nonzero
power series in kJx1, . . . , xnK as a series of the form u(xdn + ad−1x

d−1
n + · · · + a0) for a unit

u and a0, . . . , ad−1 ∈ kJx1, . . . , xn−1K. This is called Weierstrass preparation. The rest of
the proof of the Noether normalization theorem proceeds in essentially the same way. Thus,
given kJx1, . . . , xnK/I, we have some module-finite inclusion of another power series ring
kJz1, . . . , zdK ⊆ kJx1, . . . , xnK/I.

Theorem 7.44. Let R be a domain that is a finitely generated algebra over a field k, or a
quotient of a power series ring over a field. Let k[z1, . . . , zd] be any Noether normalization
for R. For any maximal ideal m of R, the length of any saturated chain of primes from 0 to
m is d. In particular, dim(R) = d.

Proof. We will show the proof in the case when R is a finitely generated domain over a field
k; the power series case is similar, and left as an exercise. We will prove by induction on d
that for any finitely generated domain with a Noether normalization with d algebraically
independent elements, any saturated chain of primes ending in a maximal ideal has length d.

When d = 0, R is a domain that is integral over a field, hence R is a field by Theorem 1.41.
Now suppose the statement holds for d − 1, and let R be a finitely generated domain over
some field k with Noether normalization A = k[z1, . . . , zd]. Consider a maximal ideal m of
R and a saturated chain

0 ( Q1 ( · · · ( Qs = m.

By Incomparability, its contraction to A = k[z1, . . . , zd] is a chain of s distinct primes in R:

0 ( P1 := Q1 ∩ A ( · · · ( Ps := Qs ∩ A.

Our assumption that the original chain is saturated implies that Q1 has height 1. Suppose
that P1 had height 2 or more. By Going Down, we would be able to construct a chain up
to Q1 of length 2 or more, but Q1 has height 1. Thus P1 has height 1. Since k[z1, . . . , zd] is
a UFD, P1 = (f) for some prime element f , by Lemma 7.5. After a change of variables, as
in Lemma 7.38, we can assume that f is monic in zd with coefficients in k[z1, . . . , zd−1]. So
k[z1, . . . , zd−1] ⊆ A/(f) ⊆ R/Q1 are module-finite extensions, and the induction hypothesis
applies to R/Q1. Now

0 = Q1/Q1 ( Q2/Q1 ( · · · ( Qs/Q1 = m/Q1

is a saturated chain in the domain R/Q1 going up to the maximal ideal m/Q1. The induction
hypothesis then says that this chain has length d− 1, so s− 1 = d− 1, and s = d.
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Corollary 7.45. The dimension of the polynomial ring k[x1, . . . , xd] is d.

Proof. The polynomial ring k[x1, . . . , xd] is a Noether normalization of itself, so Theorem 7.44
says that it must have dimension d.

This matches our geometric intuition: k[x1, . . . , xd] corresponds to Ad
k, and we are used

to thinking of Ad
k as a d-dimensional space. Moreover, if R is a finitely generated k-algebra,

then R is a quotient of k[x1, . . . , xd], where d is the number of generators of R as a k-algebra.
Therefore, dim(R) 6 d.

Corollary 7.46. If R is a k-algebra, the dimension of R is less than or equal to the minimal
size of an algebra generating set for R over k. If R = k[f1, . . . , fd] and dim(R) = d, then R is
isomorphic to a polynomial ring over k, and the generators fi are algebraically independent.

Proof. The first statement is trivial unless R is finitely generated, in which case we can write
R = k[f1, . . . , fs] ∼= k[x1, . . . , xs]/I for some ideal I, so

dim(R) 6 dim(k[x1, . . . , xs]) = d.

Suppose we chose s to be minimal. If I 6= 0, then dim(R) < s, since the zero ideal is not
contained in I.

Corollary 7.47. Let R be a finitely generated algebra or a quotient of a power series ring
over a field.

1) R is catenary.

If additionally R is a domain, then

2) R is equidimensional, and

3) height(I) = dim(R)− dim(R/I) for all ideals I.

Proof.

1) Let P ⊆ Q be primes in R. After quotient out by P , we can assume that R is a domain
and P = 0. Fix a saturated chain C from Q to a maximal ideal m. Given two saturated
chains C ′, C ′′ from 0 to Q, the concatenations C ′|C and C ′′|C are saturated chains from
0 to m, so by Theorem 7.44 they must have the same length. It follows that C ′ and C ′′

have the same length.

2) Equidimensionality is immediate from Theorem 7.44.

3) We have
height(I) = min{height(P ) | P ∈ Min(I)}

and
dim(R/I) = max{dim(R/P ) | P ∈ Min(I)}.

Therefore, it suffices to show the equality for prime ideals, since if P ∈ Min(I) attains
height(I), which is the minimal value of height(Q) for Q ∈ Min(I), then it also attains
the maximal value of dim(R/Q) for Q ∈ Min(I). Now, take a saturated chain of primes C
from 0 to P , and a saturated chain C ′ from P to a maximal ideal m. Since R is catenary,
C has length height(P ). Moreover, C ′ has length dim(R/P ) by Theorem 7.44, and C|C ′
has length dim(R) by Theorem 7.44.
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Definition 7.48. Let K ⊆ L be an extension of fields. A transcendence basis for L over
K is a maximal algebraically independent subset of L over K.

Lemma 7.49. Let {x1, . . . , xm} and {y1, . . . , yn} be two transcendence bases for L over K.
Then, there is some i such that {xi, y2, . . . , yn} is a transcendence basis.

Proof. Since L is algebraic over K(y1, . . . , yn), for each i there is some pi(t) ∈ K(y1, . . . , yn)[t]
such that pi(xi) = 0. We can clear denominators to assume without loss of generality that
pi(xi) ∈ K[y1, . . . , yn][t].

We claim that there is some i such that pi(t) /∈ K[y2, . . . , yn][t]. If not, then

pi(t) ∈ K[y2, . . . , yn][t]

for all i, and thus that each xi is algebraic over K(y2, . . . , yn). Thus, K(x1, . . . , xm) is
algebraic over K(y2, . . . , yn), and since L is algebraic over K(x1, . . . , xm), y1 is algebraic over
K(y2, . . . , yn), which contradicts that {y1, . . . , yn} is a transcendence basis. This shows the
claim.

Now, we claim that for such i, {xi, y2, . . . , yn} is a transcendence basis. Thinking of the
equation pi(xi) = 0 as a polynomial expression in K[xi, y2, . . . , yn][y1], y1 is algebraic over
K(xi, y2, . . . , yn), hence K(y1, . . . , yn) is algebraic over K(xi, y2, . . . , yn), and L as well.

If {xi, y2, . . . , yn} were algebraically dependent, then there is some polynomial equation
p(xi, y2, . . . , yn) = 0. This equation must involve xi, since y2, . . . , yn are algebraically inde-
pendent. We would then have K(xi, y2, . . . , yn) is algebraic over K(y2, . . . , yn). But since
y1 is algebraic over K(xi, y2, . . . , yn), we would have that K(y1, . . . , yn) is algebraic over
K(y2, . . . , yn), which would contradict that y1, . . . , yn is a transcendence basis.

Lemma 7.50. If {x1, . . . , xm} and {y1, . . . , yn} are two transcendence bases for L over K,
then m = n.

Proof. Say that m 6 n. If the intersection has s < m elements, then without loss of
generality y1 /∈ {x1, . . . , xm}. Then, for some i, {xi, y2 . . . , yn} is a transcendence basis, and
{x1, . . . , xm}∩ {xi, y2 . . . , yn} has s+ 1 elements. Replacing {y1, . . . , yn} with {xi, y2 . . . , yn}
and repeating this process, we obtain a transcendence basis with n elements such that
{x1, . . . , xm} ⊆ {y1, . . . , yn}. But we must then have that these two transcendence bases are
equal, so m = n.

This shows that we have a well-defined transcendence degree, which we denote by
trdegK(L). In particular, if x1, . . . , xd are indeterminates, then the transcendence degree of
K(x1, . . . , xd) over K is d.

Corollary 7.51. If R is a finitely generated domain over a field k, then

dim(R) = trdegk(frac(R)).

Proof. If S ⊆ R is module-finite, then by Lemma 7.29 frac(S) ⊆ frac(R) is integral, or
equivalently algebraic. Hence frac(S) and frac(R) have the same transcendence degree over k.
In particular, if A = k[z1, . . . , zd] is a Noether normalization for R,

trdegk(frac(R)) = trdegk(frac(A)) = trdegk(k(z1, . . . , zd)) = d = dim(A) = dim(R).
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Example 7.52. Let R = k[xu, xv, yu, yv] ⊆ k[x, y, u, v], where k is an algebraically closed
field and x, y, u, v are indeterminates. Then

frac(R) = k(xu, xv, yu, yv) = k
(
xu,

v

u
,
y

x
,
yv

xu

)
= k

(
xu,

v

u
,
y

x

)
,

and these last three are algebraically independent over k. Thus, dim(R) = 3.

Example 7.53. Let us use our dimension theorems to give two different proofs that over
any field k, R = k[x, y, z]/(y2 − xz) has dimension 2

First, we claim that A = k[x, z] is a Noether normalization of R. First, note that
x and z are algebraically independent over k. Moreover, R = A[y] and y satisfies the
monic polynomial t2 − xz ∈ A[t], so A ⊆ R = A[y] is integral, and thus module-finite by
Corollary 1.36. Therefore, dim(R) = 2.

Alternatively, one can show that y2 − xz is irreducible, e.g., by thinking of it as a poly-
nomial in y and applying Eisenstein’s criterion. Then (y2 − xz) is a prime of height one, so
by Corollary 7.47 the dimension of R is

dim(R) = dim(k[x, y, z])− height((y2 − xz)) = 3− 1 = 2.

Example 7.54. Let us compute the dimension of the ring R = k[a, b, c, d]/I, where

I = (b2 − ac, c2 − bd, bc− ad).

We claim that A = k[a, d] ⊆ R is a Noether normalization. The inclusion is integral, since

b2 = ac =⇒ b4 = a2c2 = a2bd,

so b satisfies t4 − a2dt = 0. Similarly, one can show that c satisfies t4 − ad2t.
We also need to show that a, d are algebraically independent over k, or equivalently that

the map from the polynomial ring ψ : k[u, v]→ R with ψ(u) = a, ψ(v) = d is injective.
Observe that the map

Z(I)
φ

// A2

(a, b, c, d) � // (a, d)

is surjective: given a, d ∈ k, write a = α3, d = δ3, and note that (α3, α2δ, αδ2, δ3) is an element
of X = Z(I) that maps to (a, d). Thus, the kernel of the induced map on coordinate rings
k[A2]→ k[X] is I(A2) = 0; i.e, the map is injective. By the Nullstellensatz, I(Z(I)) =

√
I,

and our induced map on coordinate rings is the map

k[u, v] // k[a, b, c, d]/
√
I φ∗(u) = a, φ∗(v) = d.

Since this map is injective, and this factors as

k[u, v]
ψ
// k[a, b, c, d]/I // // k[a, b, c, d]/

√
I

the first map is injective.



Chapter 8

Dimension: a local perspective

8.1 Height and number of generators

Theorem 8.1 (Krull’s Principal Ideal theorem). Let R be a noetherian ring, and f ∈ R.
Then, every minimal prime of (f) has height at most one.

Proof. Suppose the theorem is false, so that there is some ring R, a prime P , and an element
f such that P is minimal over (f) and height(P ) > 1. If we localize at P and then mod out
by an appropriate minimal prime, we obtain a noetherian local domain (R,m) of dimension
at least two in which m is the unique minimal prime of (f). Let’s work over that noetherian
local domain (R,m). Note that R = R/(f) is zero-dimensional, since m is the only minimal
prime over (f). Back in R, let Q be a prime strictly in between (0) and m, and notice that
we necessarily have f /∈ Q.

Consider the symbolic powers Q(n) of Q. We will show that these stabilize in R. Since
R = R/(f) is Artinian, the descending chain of ideals

QR ⊇ Q(2)R ⊇ Q(3)R ⊇ · · ·

stabilizes. We then have some n such that Q(n)R = Q(m)R for all m > n, and in particular,
Q(n)R = Q(n+1)R. Pulling back to R, we get Q(n) ⊆ Q(n+1) +(f). Then any element a ∈ Q(n)

can be written as a = b + fr, where b ∈ Q(n+1) ⊆ Q(n) and r ∈ R. Notice that this implies
that fr ∈ Q(n). Since f /∈ Q, we must have r ∈ Q(n). This yields Q(n) = q(n+1) +fq(n). Thus,
Q(n)/Q(n+1) = f(Q(n)/q(n+1)), so Q(n)/Q(n+1) = m(Q(n)/Q(n+1)). By NAK, Q(n) = Q(n+1) in
R. Similarly, we obtain Q(n) = Q(m) for all m > n.

Now, if a ∈ Q is nonzero, we have an ∈ Qn ⊆ Q(n) = Q(m) for all m, so⋂
m>1

Q(m) =
⋂
m>n

Q(m) = Q(n).

Notice that Qn 6= 0 because R is a domain, and so Q(n) ⊇ Qn is also nonzero. So⋂
m>1

Q(m) = Q(n) 6= 0.
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On the other hand, Q(m) = QmRQ ∩R for all m, and⋂
m>1

Q(m)RQ ⊆
⋂
m>1

QmRQ =
⋂
m>1

(QRQ)m = 0

by Krull’s Intersection theorem. Since R is a domain, the contraction of (0) in RQ back in
R is (0). This is the contradiction we seek. So no such Q exists, so that R has dimension 1,
and in the original ring, all the minimal primes over f must have height at most 1.

Remark 8.2. Note that this is stronger than the statement that the height of (f) is at most
one: that would only mean that some minimal prime of (f) has height at most one.

Noetherianity is necessary, as the next example shows.

Example 8.3. Let R = k[x, xy, xy2, . . .] ⊆ k[x, y]. Note that (x) is not prime: for a > 0,
xya /∈ (x), since ya /∈ R, but (xya)2 = x · xy2a ∈ (x). Thus, m = (x, xy, xy2, . . . ) ⊆

√
(x),

and since m is a maximal ideal, we have equality, so Min (x) = {m}. However, the ideal
P = (xy, xy2, xy3, . . . ) = (y)k[x, y] ∩ R is prime, and the chain (0) ( P ( m shows that
height(m) > 1.

We want to generalize this, but it is not so straightforward to run an induction. We will
need a lemma that allows us to control the chains of primes we get.

Lemma 8.4. Let R be noetherian, P ( Q ( a be primes, and f ∈ a. Then there is some
Q′ with P ( Q′ ( a and f ∈ Q′.

Proof. If f ∈ P , there is nothing to prove, since we can simply take Q′ = Q. Suppose f /∈ P .
After we quotient out by P and localize at a, we may assume that a is the unique maximal
ideal and that our ring is a domain. Thus all we need is to find a nonzero prime Q′ which is
not maximal. Note that by assumption height(a) > 2. Our assumption implies that f 6= 0,
and then by the principal ideal theorem Krull’s Principal Ideal Theorem, minimal primes of
(f) have height one, hence are not maximal nor 0. We can take Q′ to be one of the minimal
primes of f .

Theorem 8.5 (Krull’s Height Theorem). Let R be a noetherian ring. If I is an ideal
generated by n elements, then every minimal prime of I has height at most n.

Proof. By induction on n. The case n = 1 is Krull’s Principal Ideal Theorem.
Let I = (f1, . . . , fn) be an ideal, P a minimal prime of I, and P0 ( P1 ( · · · ( Ph = P

be a saturated chain of length h ending at P . If f1 ∈ P1, then we can apply the induction
hypothesis to the ring R = R/((f1) + P0) and the ideal (f2, . . . , fn)R. Then by induction
hypothesis, the chain P1R ( · · · ( PhR has length at most n − 1, so h − 1 6 n − 1 and P
has height at most n.

If f1 /∈ P1, we use the previous lemma to replace our given chain with a chain of the same
length but such that f1 ∈ P1. To do this, note that f1 ∈ Pi for some i; after all, f1 ∈ I ⊆ P .
So in the given chain, suppose that f1 ∈ Pi+1 but f1 /∈ Pi. If i > 0, apply the previous lemma
with a = Pi+1, Q = Pi, and P = Pi−1 to find Qi such that f1 ∈ Qi. Replace the chain with

P0 ( P1 ( · · · ( Pi−1 ( Qi ( Pi ( · · · ( Ph = P.

Repeat until f1 ∈ P1.
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The bound in Krull’s height theorem is sharp.

Example 8.6. If k is a field and R = k[x1, . . . , xn], the ideal (x1, x2, . . . , xn) generated by n
variables has height n. There are many other ideals that attain the bound given by Krull’s
height theorem. For example, (u3 − xyz, x2 + 2xz − 6y5, vx + 7vy) ∈ k[u, v, w, x, y, z]. An
ideal of height n generated by n elements is called a complete intersection.

If I is generated by n elements, I may have minimal primes of height less than n.

Example 8.7. The ideal (xy, xz) in k[x, y, z] has minimal primes of heights 1 and 2.

It is possible to have associated primes of height greater than the number of generators.

Example 8.8. In R = k[x, y]/(x2, xy), the ideal generated by zero elements (the zero ideal)
has an associated prime of height two, namely (x, y). The same phenomenon can happen
even in a nice polynomial ring. For example, consider the ideal

I = (x3, y3, x2u+ xyv + y2w) ⊆ R = k[u, v, w, x, y].

Note that (u, v, w, x, y) = (I : x2y2), so I has an associated prime of height 5.

Noetherianity is necessary in Krull’s height theorem.

Example 8.9. Let R = k[x, xy, xy2, . . . ] ⊆ k[x, y]. For all a > 1, xya /∈ (x), since
ya /∈ R, but (xya)2 = x · xy2a ∈ (x). Then (x) is not prime in R, and moreover m =
(x, xy, xy2, . . . ) ⊆

√
(x). Since m is a maximal ideal, we have equality, so Min (x) = {m}.

However, p = (xy, xy2, xy3, . . . ) = (y)k[x, y] ∩ R is prime, and the chain (0) ( p ( m shows
that height(m) > 1.

Corollary 8.10. If R is a noetherian ring, then any ideal has finite height. If (R,m, k) is
also local, then dim(R) 6 dimk(m/m

2) <∞.

Proof. If R is noetherian, then every ideal is finitely generated, by Proposition 1.61, and
thus by Krull’s height theorem every ideal has finite height.

Now suppose that (R,m, k) is a noetherian local ring. By NAK, m is generated by
dimk(m/m

2) elements, so

dim(R) = height(m) 6 dimk(m/m
2).

Definition 8.11. The embedding dimension of a local ring (R,m) is the minimal number
of generators of m, µ(m). We write embdim(R) := µ(m) for the embedding dimension of R.

So Corollary 8.14 can be restated as dim(R) 6 embdim(R). Rings whose dimension and
embedding dimension agree are very nicely behaved.

Definition 8.12. A noetherian local ring (R,m) is regular if dim(R) = embdim(R).

Power series rings kJx1, . . . , xdK are regular local rings. In general, a ring is regular if all
its localizations are regular local rings. In order for this definition to make sense, we need
to first make sure that regularity localizes, meaning that if (R,m) is a regular local ring,
then RP is also regular for all primes P . But to do that, we need some homological algebra.
However (spoiler alert!), things do work out alright, and as you might expect, polynomial
rings over fields are also regular.
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8.2 Systems of parameters

Here is a sort of converse to the Krull’s height theorem.

Theorem 8.13. Let (R,m) be a noetherian local ring of dimension d. There there exist
x1, . . . , xd ∈ m such that m =

√
(x1, . . . , xd).

Proof. Let d := dim(R). If d = 0, then m =
√

(0), so the statement holds.
In general, we will show that we can choose x1, . . . , xi ∈ m inductively such that every

minimal prime of Ji = (x1, . . . , xi) has height i. The case i = 0 is clear from the comment
above. Say that we have chosen the first i elements. If i < d, note that m is not a minimal
prime of Ji, as this would contradict Krull’s height theorem. Note that R is noetherian
and thus Ji has finitely many minimal primes, by Theorem 6.5. Thus, by Prime Avoidance,
we can choose xi+1 ∈ m not in any minimal prime of Ji. Then by Krull’s height theorem
every minimal prime of Ji+1 := Ji + (xi+1) has height at most i + 1. On the other hand,
every Q ∈ Min(Ji+1) contains some P ∈ Min(Ji), and in fact we must have Q ) P , since
xi+1 ∈ Q r P . Since P has height i and P ) Q, then Q must have height at least i + 1.
Therefore, Q must have height exactly i+ 1, completing the induction.

Since every minimal prime of Jd = (x1, . . . , xd) has height d, its unique minimal prime
must be m. It follows that

√
Jd = m.

Corollary 8.14. Let (R,m, k) be a noetherian local ring. Then

dim(R) = min{n |
√

(f1, . . . , fn) = m for some f1, . . . , fn} 6 µ(m).

Proof. Suppose that
√

(f1, . . . , fn) = m. Then m is a minimal prime of (f1, . . . , fn), and
thus m has height at most n by Krull’s height theorem. The dimension of a local ring is
the height of its maximal ideal, so dim(R) 6 n, and thus dim(R) is bounded above by the
minimum in the middle. On the other hand, if d = dim(R) then by Theorem 8.13 there exist
f1, . . . , fd such that m = (f1, . . . , fd), which gives the other inequality, showing

dim(R) = min{n |
√

(f1, . . . , fn) = m for some f1, . . . , fn}.

Finally, since m is generated by µ(m) elements, there are in particular µ(m) elements
whose radical is m.

Definition 8.15. A sequence of d elements x1, . . . , xd in a d-dimensional noetherian local
ring (R,m) is a system of parameters or SOP if

√
(x1, . . . , xd) = m. If k is a field, a

sequence of d homogeneous elements x1, . . . , xd in a d-dimensional N-graded finitely generated
k-algebra R, with R0 = k, is a homogeneous system of parameters if

√
(x1, . . . , xd) = R+.

We say that elements x1, . . . , xt are parameters if they are part of a system of parame-
ters; this is a property of the set, not just the elements.

By Theorem 8.13, every local ring admits a system of parameters, and these can be
useful in characterizing the dimension of a local noetherian ring, or the height of a prime in
a noetherian ring. Note that there is a graded version of Theorem 8.13 as well, where we
can choose a homogeneous sop.
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Definition 8.16. Let R be a noetherian ring. A prime P of R is an absolutely minimal
prime of R if dim(R) = dim(R/P ).

Absolutely minimal primes are minimal, since dim(R) > dim(R/P ) + height(P ).

Theorem 8.17. Let (R,m) be a noetherian local ring, and x1, . . . , xt ∈ m.

1) dim(R/(x1, . . . , xt)) > dim(R)− t.

2) x1, . . . , xt are parameters if and only if dim(R/(x1, . . . , xt)) = dim(R)− t.

3) x1, . . . , xt are parameters if and only if x1 is not in any absolutely minimal prime of
R and xi is not contained in any absolutely minimal prime of R/(x1, . . . , xi−1) for each
i = 2, . . . , t.

Proof.

1) If dim(R/(x1, . . . , xt)) = s, then take a system of parameters y1, . . . , ys for R/(x1, . . . , xt),
and pull back to R to get x1, . . . , xt, y

′
1, . . . , y

′
s in R such that the quotient of R modulo

the ideal generated by these elements has dimension zero. By Krull height, we get that
t+ s > dim(R).

2) Let d = dim(R). Suppose first that dim(R/(x1, . . . , xt)) = d − t. Then, there is
a SOP y1, . . . , yd−t for R/(x1, . . . , xt); lift back to R to get a sequence of d elements
x1, . . . , xt, y1, . . . , yd−t that generate an m-primary ideal. This is a SOP, so x1, . . . , xt are
parameters.

On the other hand, if x1, . . . , xt, are parameters, extend to a SOP x1, . . . , xd. If I is the
image of (xt+1, . . . , xd) in R′ = R/(x1, . . . , xt), we have R′/I is zero-dimensional, hence
has finite length, so AssR′(R

′/I) = {m}, and I is m-primary in R′. Thus, dim(R′) is equal
to the height of I, which is then 6 d− t by Krull height. That is, dim(R′) 6 d− t, and
using the first statement, we have equality.

3) This follows from the previous statement and the observation that dim(S/(f)) < dim(S)
if and only if f is not in any absolutely minimal prime of S.

It is worth comparing the characterization in part three with our existence proof: we
constructed a system of parameters by inductively avoiding all the minimal primes; in general
a system a parameters is a sequence where we inductively avoid all of the absolutely minimal
primes.

Note that the first inequality in Theorem 8.17 can fail outside of the local case.

Example 8.18. Let R = Z(2)[x]. This ring has dimension at least two, but R/(2x− 1) ∼= Q
has dimension zero.

For an example that is a finitely generated algebra over a field, consider R = S/I with
S = k[x, y, z] and I = (xy, xz, x2−x). This ring has dimension two: A = k[y, z] is a noether
normalization, as x2 − x = 0 makes x integral over A, and no nonzero polynomial in y, z in
k[x, y, z] can belong to the ideal (x) ⊇ (xy, xz, x2 − x). However,

R/(x− 1) ∼=
k[x, y, z]

(y, z, x− 1)
∼= k

has dimension zero.



Appendix A

Macaulay2

There are several computer algebra systems dedicated to algebraic geometry and commu-
tative algebra computations, such as Singular (more popular among algebraic geometers),
CoCoA (which is more popular with european commutative algebraists, having originated in
Genova, Italy), and Macaulay2. There are many computations you could run on any of these
systems (and others), but we will focus on Macaulay2 since it’s the most popular computer
algebra system among US based commutative algebraists.

Macaulay2, as the name suggests, is a successor of a previous computer algebra system
named Macaulay. Macaulay was first developed in 1983 by Dave Bayer and Mike Stillman,
and while some still use it today, the system has not been updated since its final release in
2000. In 1993, Daniel Grayson and Mike Stillman released the first version of Macaulay2,
and the current stable version if Macaulay2 1.16.

Macaulay2, or M2 for short, is an open-source project, with many contributors writing
packages that are then released with the newest Macaulay2 version. Journals like the Journal
of Software for Algebra and Geometry publish peer-refereed short articles that describe and
explain the functionality of new packages, with the package source code being peer reviewed
as well.

The National Science Foundation has funded Macaulay2 since 1992. Besides funding the
project through direct grants, the NSF has also funded several Macaulay2 workshops —
conferences where Macaulay2 package developers gather to work on new packages, and to
share updates to the Macaulay2 core code and recent packages.

A.1 Getting started

A Macaulay2 session often starts with defining some ambient ring we will be doing compu-
tations over. Common rings such as the rationals and the integers can be defined using the
commands QQ and ZZ; one can easily take quotients or build polynomial rings (in finitely
many variables) over these. For example,

i1 : R = ZZ/101[x,y]

o1 = R
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o1 : PolynomialRing

and

i1 : k = ZZ/101;

i2 : R = k[x,y];

both store the ring Z/101 as R, with the small difference that in the second example
Macaulay2 has named the coefficient field k. One quirk that might make a difference later
is that if we use the first option and later set k to be the field Z/101, our ring R is not a
polynomial ring over k. Also, in the second example we ended each line with a ;, which tells
Macaulay2 to run the command but not display the result of the computation — which is
in this case was simply an assignment, so the result is not relevant.

We can now do all sorts of computations over our ring R. For example, we can define an
ideal in R, as follows:

i3 : I = ideal(x^2,y^2,x*y)

2 2
o3 = ideal (x , y , x*y)

o3 : Ideal of R

Above we have set I to be the ideal in R that is generated by x2, y2, xy. The notation
ideal( ) requires the usage of ˆ for powers and ∗ for products; alternatively, we can define
the exact same ideal with the notation ideal" ", as follows:

i3 : I = ideal"x2,y2,xy"

2 2
o3 = ideal (x , y , x*y)

o3 : Ideal of R

Now we can use this ideal I to either define a quotient ring S = R/I or the R-module
M = R/I, as follows:

i4 : M = R^1/I

o4 = cokernel | x2 y2 xy |
1

o4 : R-module, quotient of R

i5 : S = R/I

o5 = S

o5 : QuotientRing
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It’s important to note that while R is a ring, R1 is the R-module R — this is a very
important difference for Macaulay2, since these two objects have different types. So S defined
above is a ring, while M is a module. Notice that Macaulay2 stored the module M as the
cokernel of the map

R3

[
x2 y2 xy

]
// R .

When you make a new definition in Macaulay2, you might want to pay attention to
what ring your new object is defined over. For example, now that we defined this ring S,
Macaulay2 has automatically taken S to be our current ambient ring, and any calculation
or definition we run next will be considered over S and not R. If you want to return to the
original ring R, you must first run the command use R.

If you want to work over a finitely generated algebra over one of the basic rings you
can define in Macaulay2, and your ring is not a quotient of a polynomial ring, you want
to rewrite this algebra as a quotient of a polynomial ring. For example, suppose you want
to work over the second Veronese in 2 variables over our field k from before, meaning the
algebra k[x2, xy, y2]. We need 3 algebra generators, which we will call a, b, c, corresponding
to x2, xy, and y2:

i6 : U = k[a,b,c]

o6 = U

o6 : PolynomialRing

i7 : f = map(R,U,{x^2,x*y,y^2})
2 2

o7 = map(R,U,{x , x*y, y })

o7 : RingMap R <--- U

i8 : J = ker f
2

o8 = ideal(b - a*c)

o8 : Ideal of U

i9 : T = U/J

o9 = T

o9 : QuotientRing

Our ring T at the end is isomorphic to the 2nd Veronese of R, which is the ring we
wanted. Note the syntax order in map: first target, then source, then a list with the images
of each algebra generator.
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A.2 Asking Macaulay2 for help

As you’re learning how to use Macaulay2, you will often find yourself needing some help.
Luckily, Macaulay2 can help you directly! For example, suppose you know the name of a
command, but do not remember the syntax to use it. You can ask ?command, and Macaulay2
will show you the different usages of the command you want to know about.

i10 : ?primaryDecomposition

primaryDecomposition -- irredundant primary decomposition of an ideal

* Usage:
primaryDecomposition I

* Inputs:
* I, an ideal, in a (quotient of a) polynomial ring R

* Optional inputs:
* MinimalGenerators => a Boolean value, default value true, if false, the

components will not be minimalized
* Strategy => ..., default value null,

* Outputs:
* a list, containing a minimal list of primary ideals whose intersection

is I

Ways to use primaryDecomposition :
==================================

* "primaryDecomposition(Ideal)" -- see "primaryDecomposition" -- irredundant
primary decomposition of an ideal

* "primaryDecomposition(Module)" -- irredundant primary decomposition of a
module

* "primaryDecomposition(Ring)" -- see "primaryDecomposition(Module)" --
irredundant primary decomposition of a module

For the programmer
==================

The object "primaryDecomposition" is a method function with options.

If instead you’d rather read the complete Macaulay2 documentation on the command
you are interested in, you can use the viewHelp command, which will open an html page
with the documentation you asked for. So running

i11 : viewHelp "primaryDecomposition"

will open an html page dedicate to the method primaryDecomposition, which includes
examples and links to related methods.



119

A.3 Basic commands

Many Macaulay2 commands are easy to guess, and named exactly what you would expect
them to be named. Often, googling “Macaulay2” followed by a few descriptive words will
easily land you on the documentation for whatever you are trying to do.

Here are some basic commands you will likely use:

• ideal(f1, . . . , fn) will return the ideal generated by f1, . . . , fn. Here products should
be indicated by ∗, and powers with .̂ If you’d rather not use ̂ (this might be nice if
you have lots of powers), you can write ideal(f1, . . . , fn) instead.

• map(S,R, f1, . . . , fn) gives a ring map R→ S if R and S are rings, and R is a quotient
of k[x1, . . . , xn]. The resulting ring map will send xi 7→ fi. There are many variations
of map — for example, you can use it to define R-module homomorphisms — but you
should carefully input the information in the required format. Try viewHelp map in
Macaulay2 for more details

• ker(f) returns the kernel of the map f .

• I + J and I*J return the sum and product of the ideals I and J , respectively.

• A = matrix{{a1,1, . . . , a1,n}, . . . , {am,1, . . . , am,n}} returns the matrix

A =

a1,1 . . . a1,n

. . .

am,1 . . . am,n


If you are familiar with any other programming language, many of the basics are still the

same. For example, some of the commands we will use return lists, and we might often need
to do operations on lists. As with many other programming languages, a list is indicated by
{ } with the elements separated by commas.

i6 : w = {ZZ, 3, ideal"xy3"}
3

o6 = {ZZ, 3, ideal(x*y )}

o6 : List

As in most programming languages, Macaulay2 follows the convention that the first
position in a list is the 0th position.

The method primaryDecomposition returns a list of primary ideals whose intersection
is the input ideal, and associatedPrimes returns the list of associated primes of the given
ideal or module. Operations on lists are often intuitive. For example, let’s say we want to
find the primary component of an ideal with a particular radical.
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i1 : R = QQ[x,y];

i2 : I = ideal"x2,xy";

o2 : Ideal of R

i3 : prim = primaryDecomposition I
2

o3 = {ideal x, ideal (y, x )}

o3 : List

i4 : L = select(prim, Q -> radical(Q) == ideal"x,y")
2

o4 = {ideal (y, x )}

o4 : List

The method select returns a list of all the elements in our list with the required prop-
erties. In this case, if we actually want the primary ideal we just selected, as opposed to a
list containing it, we need to extract the first component of our list L.

i5 : L_0
2

o5 = ideal (y, x )

o5 : Ideal of R
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(R,m, k), 61
I ∩R, 37, 63
IS, 37
M(t), 79
Mf , 66
MP , 66
P -primary ideal, 84
P (n), 91
R-module, 3
R[Λ], 9
R[f1, . . . , fd], 11
RG, 28
Rf , 64
RP , 64
Sn, 29
T -graded, 31
T -graded module, 34
V (I), 41
W−1M , 66
W−1α, 67
AssR(M), 75
C{z}, 23
Min(I), 71
Min(R), 71
Supp(M), 73
ann(M), 66
deg(r), 31
dim(R), 94
κ(P ), 98
κψ(p), 98
N-graded, 31
C(R,R), 23
C∞(R,R), 23
N (R), 71

Z(M), 77
Z(X), 48
Zk(T ), 48
adj(B), 16
trdegK(L), 108
| r |, 31
Spec(R), 41
I, 100

I
S
, 100

R, 15√
I, 41∑
γ∈ΓRγ, 5

embdim(R), 112

B̂ij, 16
k[X], 54

0, 1, 3
1, 1, 3

absolutely minimal prime, 114
affine algebra, 54
affine algebraic variety, 48
affine space, 47
algebra, 2
algebra generated by, 9
algebra-finite, 11
algebraic map, 53
algebraic set, 48
algebraic variety, 48
annihilator, 66
associated prime, 75
associated primes of an ideal, 75

basis, 5
basis of a module, 5

catenary ring, 97
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characteristic of a ring, 62
classical adjoint, 16
colon, 67
complete intersection, 112
contraction, 37
coordinate ring, 54
cuspidal curve, 53
cyclic module, 6

degree of a graded module
homomorphism, 35

degree of a homogeneous element, 31
degree preserving homomorphism, 34
degree-preserving homomorphism, 35
determinantal trick, 16
dimension, 94
dimension of a module, 94
dimension of a variety, 93
direct summand, 36
domain, 3

embedded prime, 83
embedding dimension, 112
equal characteristic p, 62
equal characteristic zero, 62
equation of integral dependence, 15
equidimensional ring, 97
exact sequence of modules, 20
expansion of an ideal, 37

fiber of a map, 98
fiber ring, 98
filtration, 79
fine grading, 32
finite type, 11
finitely generated algebra, 11
finitely generated module, 6
free algebra, 10
free module, 5

Gaussian integers, 13
generates, 9
generating set, 5
generators for an R-module, 5
Going down Theorem, 104
Going up Theorem, 103

graded components, 31
graded homomorphism, 35
graded module, 34
graded ring, 31
graded ring homomorphism, 34

height, 94
homogeneous components, 31
homogeneous element, 31
homogeneous ideal, 33
homogeneous system of parameters, 113
homomorphism induced by, 54
homomorphism of R-modules, 4

ideal, 2
ideal generated by, 2
Incomparability, 102
integral closure, 15
integral closure of an ideal, 100
integral element, 15
integral over A, 15
integral over an ideal, 100
integrally closed, 15
invariant, 28
irreducible ideal, 87
irredundant primary decomposition, 87
isomorphism of rings, 2
isomorphism of varieties, 53

Jacobian, 11

Krull dimension, 94
Krull’s Height Theorem, 111
Krull’s Principal Ideal Theorem, 110

length of a chain of primes, 94
linearly reductive group, 38
local ring, 61
local ring of a point, 64
localization at a prime, 64
localization of a module, 66
localization of a ring, 63
Lying Over Theorem, 101

map of R-modules, 4
map on Spec, 42
minimal generating set, 69
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minimal generators, 69
minimal number of generators, 70
minimal prime, 42, 71
minimal prime of R, 42
minimal primes of R, 71
mixed characteristic (0, p), 62
module, 3
module generated by a subset, 5
morphism of varieties, 53
multiplicatively closed subset, 43

nilradical, 71
Noether normalization, 105, 106
noetherian module, 24
noetherian ring, 22
nonzerodivisor, 63

parameters, 113
PID, 3
presentation, 6
primary decomposition, 87
primary ideal, 84
Prime avoidance, 45
prime filtration, 79
prime ideal, 39
prime spectrum, 41
principal ideal, 3
principal ideal domain, 3
pullback, 54

quasi-homogeneous polynomial, 33
quasilocal ring, 61
quotient of modules, 4

radical ideal, 41
radical of an ideal, 41
reduced, 42
Rees algebra, 100
regular element, 63

regular local ring, 112
regular map, 53
relation, 6
relations, 10
relations of an algebra, 10
residue field, 40
restriction of scalars, 9
ring, 1
ring homomorphism, 2
ring isomorphism, 2

saturated chain of primes, 94
set of generators, 5
shift, 79
short exact sequence, 20
sop, 113
splitting, 37
standard grading, 32
structure homomorphism of an algebra, 9
submodule, 4
subring, 2
support, 73
symbolic power, 91
system of parameters, 113

total ring of fractions, 64
transcendence basis, 108
transcendence degree, 108

unit ideal, 2

variety, 48

weights, 32

Zariski topology, 41, 51
zero ideal, 2
zerodivisors, 77
Zorn’s Lemma, 40
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