Problem Set 3

Turn in 4 of the following problems. You must pick at least $\mathbf{2}$ problems involving tensor products.

Problem 1. Consider an exact sequence

$$
A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} D \xrightarrow{d} E .
$$

a) Show a is surjective if and only if c is injective.
b) Show that if a and d are isos, then $C=0$.
c) Show that every short exact sequence breaks into short exact sequences

$$
0 \longrightarrow \operatorname{coker} a \xrightarrow{\alpha} C \xrightarrow{\beta} \operatorname{ker} d \longrightarrow 0
$$

with

$$
\alpha(x+\operatorname{im} a)=b(x) \quad \text { and } \quad \beta(x)=c(x) .
$$

Problem 2. Let $T: R-\bmod \longrightarrow S-\bmod$ be an additive functor. Show that if

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
$$

is a split short exact sequence of R-modules, then

$$
0 \longrightarrow T(A) \xrightarrow{T(f)} T(B) \xrightarrow{T(g)} T(C) \longrightarrow 0
$$

is a short exact sequence of S-modules.

Let R be a commutative ring and I be an ideal in R. The I-torsion functor is the functor $\Gamma_{I}: R-\bmod \longrightarrow R-\bmod$ that sends each R-module M to the R-module

$$
\Gamma_{I}(M):=\bigcup_{n \geqslant 1}\left(0:_{M} I^{n}\right)=\left\{m \in M \mid I^{n} m=0 \text { for some } n \geqslant 1\right\}
$$

and that sends each R-module homomorphism $f: M \rightarrow N$ to its restriction to $\Gamma_{I}(M) \rightarrow \Gamma_{I}(N)$.
Problem 3. Let R be a commutative ring and I be an ideal in R.
a) Show that any R-module homomorphism $f: M \rightarrow N$ satisfies $f\left(\Gamma_{I}(M)\right) \subseteq \Gamma_{I}(N)$.
b) Show that Γ_{I} is an indeed additive covariant functor.
c) Show that Γ_{I} is left exact.
d) Show that Γ_{I} is not right exact.

Problem 4. Let R be a commutative ring, I and J ideals in R, and M be an R-module.
a) Show that $R / I \otimes_{R} R / J \cong R /(I+J)$.
b) Show that $R / I \otimes_{R} M \cong M / I M$.
c) There is an R-module map $I \otimes_{R} M \longrightarrow I M$ induced by the R-bilinear map $(a, m) \mapsto a m$. This map is always clearly surjective; must it be injective?

Problem 5. Let $R=\mathbb{Z}[x], I=(2, x)$, and consider the R-module $M=I \otimes_{R} I$.
a) Show that $2 \otimes 2+x \otimes x$ is not a simple tensor in M.
b) Show that $m=2 \otimes x-x \otimes 2$ is a nonzero torsion element in M.
c) Show that the submodule of $I \otimes_{R} I$ generated by m is isomorphic to R / I.

Let R be a domain and M be an R-module. The torsion of M is the submodule

$$
T(M):=\{m \in M \mid r m=0 \text { for some nonzero } r \in R\}
$$

The elements of $T(M)$ are called torsion elements, and we say that M is torsion if $T(M)=M$. Finally, M is torsion free if $T(M)=0$.

Problem 6. By torsion abelian group we mean torsion \mathbb{Z}-module.
a) Show that if A is a divisible abelian group and T is a torsion abelian group, then $A \otimes_{\mathbb{Z}} T=0$.
b) Prove that there is no nonzero (unital) ring R such that the underlying abelian group $(R,+)$ is both torsion and divisible.

For example, this shows that there is no ring whose underlying abelian group is \mathbb{Q} / \mathbb{Z}.

Problem 7. Let R be a domain with fraction field Q and M be an R-module.
a) Show that the R-module $M / T(M)$ is torsion free.
b) If $f: M \longrightarrow N$ is an R-module homomorphism, $f(T(M)) \subseteq T(N)$.
c) Show that the kernel of the map $M \longrightarrow Q \otimes_{R} M$ given by $m \mapsto 1 \otimes m$ is $T(M)$.
d) Show that torsion is a left exact covariant functor R - Mod $\rightarrow R$ - Mod.

Problem 8. Let R be a domain with fraction field Q.
a) Show that for every Q-vector space V and every R-module $M, V \otimes_{R} M \cong V \otimes_{R}(M / T(M))$.
b) Show that for every nonzero Q-vector space V and every R-module $M, V \otimes_{R} M=0$ if and only if M is torsion.
c) Show that $\mathbb{R} \otimes_{\mathbb{Z}}(\mathbb{R} / \mathbb{Z}) \neq 0$.

