Final Exam

Instructions: Turn in **4** of the following problems. You cannot use any resources besides me, your classmates, and our course notes. You are not allowed to use the internet or any other textbooks as a resource.

Problem 1. Show that for all finitely generated abelian groups M and N and all $i \ge 2$,

$$\operatorname{Ext}^{i}_{\mathbb{Z}}(M,N) = 0.$$

Problem 2. Let (R, \mathfrak{m}, k) be a commutative noetherian local ring, and let M be a finitely generated R-module. Show that

$$\beta_i(M) = \dim_k \left(\operatorname{Tor}_i^R(M, k) \right) = \dim_k \left(\operatorname{Ext}_R^i(M, k) \right).$$

You do not need to justify why $\operatorname{Tor}_{i}^{R}(M,k)$ and $\operatorname{Ext}_{R}^{i}(M,k)$ are k-vector spaces.

Problem 3. Show that if $\pi: M \to N$ is a surjective map of *R*-modules with *M* and *N* both flat, then ker π is flat.

Problem 4. Show that $\operatorname{pdim}_R M \leq d$ if and only if $\operatorname{Ext}_R^{d+1}(M, N) = 0$ for all *R*-modules *N*.

Problem 5. Let (R, \mathfrak{m}) be a commutative noetherian local ring, M and N be finitely generated R-modules, and $r \in \mathfrak{m}$. Show that if r is regular on M and $\operatorname{Ext}_{R}^{i}(M/rM, N) = 0$ for $i \gg 0$, then $\operatorname{Ext}_{R}^{i}(M, N) = 0$ for $i \gg 0$.

Hint: Show that $\operatorname{Ext}_{R}^{i}(M, N)$ is a finitely generated *R*-module.

Problem 6. Let $f: A \to B$ be a map of complexes. Show that f is nullhomotopic if and only if f factors through the canonical map $A \to \text{cone}(\text{id}_A)$.

Problem 7. Let \mathcal{A} be an abelian category.

a) Show that $\ker(x \xrightarrow{0} y) = 1_x$, $\operatorname{coker}(x \xrightarrow{0} y) = 1_y$, and $\operatorname{im}(x \xrightarrow{0} y) = 0 \longrightarrow y$.

- b) Show that f is a mono if and only if fg = 0 implies g = 0 for all g.
- c) Show that f is a mono if and only if ker f = 0.