Appendix A

Macaulay2

There are several computer algebra systems dedicated to algebraic geometry and commu-
tative algebra computations, such as Singular (more popular among algebraic geometers),
CoCoA (which is more popular with european commutative algebraists, having originated in
Genova, Italy), and Macaulay2. There are many computations you could run on any of these
systems (and others), but we will focus on Macaulay?2 since it’s the most popular computer
algebra system among US based commutative algebraists.

Macaulay2, as the name suggests, is a successor of a previous computer algebra system
named Macaulay. Macaulay was first developed in 1983 by Dave Bayer and Mike Stillman,
and while some still use it today, the system has not been updated since its final release in
2000. In 1993, Daniel Grayson and Mike Stillman released the first version of Macaulay?2,
and the current stable version if Macaulay2 1.16.

Macaulay2, or M2 for short, is an open-source project, with many contributors writing
packages that are then released with the newest Macaulay?2 version. Journals like the Journal
of Software for Algebra and Geometry publish peer-refereed short articles that describe and
explain the functionality of new packages, with the package source code being peer reviewed
as well.

The National Science Foundation has funded Macaulay?2 since 1992. Besides funding the
project through direct grants, the NSF has also funded several Macaulay2 workshops —
conferences where Macaulay2 package developers gather to work on new packages, and to
share updates to the Macaulay2 core code and recent packages.

A.1 Getting started

A Macaulay?2 session often starts with defining some ambient ring we will be doing compu-
tations over. Common rings such as the rationals and the integers can be defined using the
commands QQ and ZZ; one can easily take quotients or build polynomial rings (in finitely
many variables) over these. For example,

i1 : R = ZZ/101[x,y]

ol =R

https://www.singular.uni-kl.de
http://cocoa.dima.unige.it
https://faculty.math.illinois.edu/Macaulay2/

ol : PolynomialRing

and
il : k = ZZ/101;
i2 : R = k[x,y];

both store the ring Z/101 as R, with the small difference that in the second example
Macaulay2 has named the coefficient field k. One quirk that might make a difference later
is that if we use the first option and later set k to be the field Z/101, our ring R is not a
polynomial ring over k. Also, in the second example we ended each line with a ;, which tells
Macaulay2 to run the command but not display the result of the computation — which is
in this case was simply an assignment, so the result is not relevant.

We can now do all sorts of computations over our ring R. For example, we can define an
ideal in R, as follows:

i3 : I = ideal(x"2,y"2,x*y)
2 2

03 = ideal (x , y , x*y)

03 : Ideal of R

Above we have set I to be the ideal in R that is generated by 22, 4%, zy. The notation
ideal () requires the usage of ~ for powers and * for products; alternatively, we can define
the exact same ideal with the notation ideal" ", as follows:

i3 : I = ideal"x2,y2,xy"

2 2
03 = ideal (x , y , x*y)

03 : Ideal of R

Now we can use this ideal I to either define a quotient ring S = R/I or the R-module
M = R/, as follows:

i4 : M =R"1/I

o4

cokernel | x2 y2 xy |

1
04 : R-module, quotient of R
i6 : 8 = R/I

o5

Il
n

05 : QuotientRing

It’s important to note that while R is a ring, R! is the R-module R — this is a very
important difference for Macaulay?2, since these two objects have different types. So S defined
above is a ring, while M is a module. Notice that Macaulay2 stored the module M as the
cokernel of the map

When you make a new definition in Macaulay2, you might want to pay attention to
what ring your new object is defined over. For example, now that we defined this ring S,
Macaulay2 has automatically taken S to be our current ambient ring, and any calculation
or definition we run next will be considered over S and not R. If you want to return to the
original ring R, you must first run the command use R.

If you want to work over a finitely generated algebra over one of the basic rings you
can define in Macaulay2, and your ring is not a quotient of a polynomial ring, you want
to rewrite this algebra as a quotient of a polynomial ring. For example, suppose you want
to work over the second Veronese in 2 variables over our field k& from before, meaning the
algebra k[z?, xy,y?]. We need 3 algebra generators, which we will call a, b, ¢, corresponding
to 22, zy, and y:

i6 : U = k[a,b,c]
06 = U
06 : PolynomialRing
i7 £ = map(R,U’{XAQ’X*y,yAQ})
2 2
o7 = map(R,U,{x , x*y, y })
o7 : RingMap R <— U
i8 : J = ker £
2
08 = ideal(b - ax*c)
08 : Ideal of U
i9 : T =10/J
09 =T
09 : QuotientRing
Our ring T at the end is isomorphic to the 2nd Veronese of R, which is the ring we

wanted. Note the syntax order in map: first target, then source, then a list with the images
of each algebra generator.

A.2 Asking Macaulay2 for help

As you're learning how to use Macaulay2, you will often find yourself needing some help.
Luckily, Macaulay2 can help you directly! For example, suppose you know the name of a
command, but do not remember the syntax to use it. You can ask ?command, and Macaulay2
will show you the different usages of the command you want to know about.

110 : 7primaryDecomposition

primaryDecomposition —-- irredundant primary decomposition of an ideal
* Usage:
primaryDecomposition I
* Inputs:

* I, an ideal, in a (quotient of a) polynomial ring R
* Optional inputs:
* MinimalGenerators => a Boolean value, default value true, if false, the
components will not be minimalized
* Strategy => ..., default value null,

* Qutputs:
* a list, containing a minimal list of primary ideals whose intersection

is I

Ways to use primaryDecomposition :

* "primaryDecomposition(Ideal)" -- see "primaryDecomposition" -- irredundant
primary decomposition of an ideal

* "primaryDecomposition(Module)" -- irredundant primary decomposition of a
module

* "primaryDecomposition(Ring)" -- see "primaryDecomposition(Module)" --

irredundant primary decomposition of a module

For the programmer

The object "primaryDecomposition" is a method function with optioms.

If instead you’d rather read the complete Macaulay2 documentation on the command
you are interested in, you can use the viewHelp command, which will open an html page
with the documentation you asked for. So running

i1l : viewHelp "primaryDecomposition"

will open an html page dedicate to the method primaryDecomposition, which includes
examples and links to related methods.

A.3 Basic commands

Many Macaulay2 commands are easy to guess, and named exactly what you would expect
them to be named. Often, googling “Macaulay2” followed by a few descriptive words will
easily land you on the documentation for whatever you are trying to do.

Here are some basic commands you will likely use:

ideal(fy,..., fn) will return the ideal generated by fi,..., f,. Here products should
be indicated by %, and powers with . If you’d rather not use ~ (this might be nice if
you have lots of powers), you can write ideal(fi,..., f,) instead.

map(S, R, f1,..., fn) gives a ring map R — S if R and S are rings, and R is a quotient
of k[xy,...,x,]. The resulting ring map will send z; — f;. There are many variations
of map — for example, you can use it to define R-module homomorphisms — but you
should carefully input the information in the required format. Try viewHelp map in
Macaulay?2 for more details

ker(f) returns the kernel of the map f.

I + Jand I*J return the sum and product of the ideals I and J, respectively.

A = matrix{{ai1,..., a1}, -, {@m1,- .., Qmn}} returns the matrix
ari1 ... Q1p
A=
am,l am,n

If you are familiar with any other programming language, many of the basics are still the
same. For example, some of the commands we will use return lists, and we might often need
to do operations on lists. As with many other programming languages, a list is indicated by
{ } with the elements separated by commas.

i6 :

06 =

o6

w = {ZZ, 3, ideal"xy3"}
3
{Zz, 3, ideal(x*y)}

: List

As in most programming languages, Macaulay2 follows the convention that the first
position in a list is the Oth position.

The method primaryDecomposition returns a list of primary ideals whose intersection
is the input ideal, and associatedPrimes returns the list of associated primes of the given
ideal or module. Operations on lists are often intuitive. For example, let’s say we want to
find the primary component of an ideal with a particular radical.

il

=
I

QQlx,y];

i2

=
I

ideal"x2,xy";
02 : Ideal of R

i3 : prim = primaryDecomposition I
2
03 = {ideal x, ideal (y, x)}

o3 : List

i4 : L = select(prim, Q -> radical(Q) == ideal'"x,y")
2
04 = {ideal (y, x)}

o4 : List

The method select returns a list of all the elements in our list with the required prop-
erties. In this case, if we actually want the primary ideal we just selected, as opposed to a
list containing it, we need to extract the first component of our list L.

i5 : L_O
2
o5 = ideal (y, x)

o5 : Ideal of R

A.4 Graded rings

Polynomial rings in Macaulay2 are graded with the standard grading by default, meaning
that all the variables have degree 1. To define a different grading, we give Macaulay2 a list
with the grading of each of the variables:

i1 : R = ZZ/101[a,b,c,Degrees=>{{1,2},{2,1},{1,0}}];

We can check whether an element of R isHomogeneous, and the function degree applied to
an element of R returns the least upper bound of the degrees of its monomials:

i2 : degree (a+b)
02 {2, 2}
02 : List

i3 : isHomogeneous(a+b)
o3 = false

A.5 Complexes and homology in Macaulay2

There are two different ways to do computations involving complexes in Macaulay2: using
ChainComplexes, or the new (and still under construction) Complexes package. To use
Complexes, you must first load the Complexes package, while the ChainComplexes methods
are automatically loaded with Macaulay?2.

A.5.1 Chain Complexes

To create a new chain complex by hand, we start by setting up R-module maps.
i1 : R = QQ[a,b];

i2 : d1 = map(R"1, R"2, {{a,b}})

02 | ab |
1 2

02 : Matrix R <-—-- R

i3 : d2 = map(R~2, R"1, {{-b},{a}})
| b |
| a |

2 1
03 : Matrix R <--- R

Keep in mind that the syntax of map is a bit funny: we write map (target,source,matrix).
To make sure we set up the next map in a way that is composable with d;, we can use the
methods source and target:

i3 : d1 = map(source d0, R~1, {{-b},{a}})

03 =1 -b |
| a |

2 1

03 : Matrix R <--- R

We can also double check our maps do indeed map a complex, by checking the composition
d1 ©) dQZ

i4 : dl * d2 ==
o4 = true

So now we are ready to set up our new chain complex.

i5 : C = new ChainComplex
05 =0

05 : ChainComplex

i6 : C#0 = target dil

1
o6 = R

06 : R-module, free
i7 : C#1 = target d2

2
o7 = R

o7 : R-module, free
i8 : C#2 = source d2

1
o8 = R

08 : R-module, free

Given a chain complex C, we can ask Macaulay2 what our complex is by simply running the
name of the complex:

i9 : C

1 2 1
09 =R <—-R <—-R

09 : ChainComplex
Or we can ask for a better visual description of the maps, using C.dd:

110 : C.dd

010 : ChainComplexMap

We can also set up the same complex in a more compact way, by simply feeding the maps
we want in order. Macaulay2 will automatically place the first map with the target in
homological degree 0 and the source in degree 1.

11 : D = chainComplex(dl,d2)

1 2 1
0ll =R <—-R <—-R

0ol1l : ChainComplex

Notice this is indeed the same complex.

i12 : D.dd
1 2
012 =0 : R <——————————- R : 1
| a b |
2 1
1 : R <—————————- R : 2
| -b |
| a |

012 : ChainComplexMap
We can also ask Macaulay2 to compute the homology of our complex:
113 : HH D

013 = 0 : cokernel | a b |

1 : subquotient (| b |, | -b |)
l -a | | a |
2 : image O

013 : GradedModule

Or we could simply ask for the homology in a specific degree:

il4 : HH_.0 D

014 = cokernel | a b |
1
014 : R-module, quotient of R

A.5.2 The Complexes package

To use this functionality, you must first load the Complexes package
115 : needsPackage "Complexes";

015 = Complexes

0l5 : Package

We can use our maps from above to set up a complex with the same maps. We feed a
list of the maps we want to use to the method complex.

i16 : F = complex({d1,d2})

1 2 1
0l6 = R <-- R <-- R

016 : Complex

We cam read off the maps and the homology in our complex using the same commands as
we use with chainComplexes, although the information returned gets presented in a slightly
different fashion.

il7 : HH F
017 = cokernel | a b | <-- subquotient (| b |, | -b |) <-- image 0
l -a | | a |
0 2
1

017 : Complex
118 : F.dd

1 2

10

018 : ComplexMap

If we want to set up our complex starting in a different homological degree, we can do the
following:

i19 : G = complex({d1,d2}, Base => 7)

1 2 1
019 =R <-- R <--R

019 : Complex
i20 : H = complex({d1,d2}, Base => -13)

1 2 1
020 = R <-- R <-- R

-13 -12 -11
020 : Complex

A.5.3 Maps of complexes

Suppose we are given two complexes C and D and a map of complexes f: C — D. The
routine map can be used to define f using chainComplexes: it receives the target D, the
source D, and a function f that returns f; when we compute £ (i).

i1 : R = QQ[a,b];
i2 : ¢l = map(R"0,R"1,0);

1
02 : Matrix 0 <--- R

i3 : c2 = map(R~1, R"2, {{a,b}});

11

1 2
03 : Matrix R <-—-- R

i4 : ¢3 = map(R"2, R"1, {{-b},{a}});

2 1
o4 : Matrix R <-—- R

i5 : c4 = map(R"1, R70, 0);

1
o5 : Matrix R <-—- 0

i6 : C = chainComplex(cl,c2,c3,c4);

i7 :
dl = map(R"0,R"1,0);

1
o7 : Matrix 0 <--- R

i8 : d2 = id_(R"1);

1 1
08 : Matrix R <--- R

i9 : d3 = map(R~1, R0, 0);

1
09 : Matrix R <-—-0

i10 : d4 = map(R~0, R0, 0);
010 : Matrix O <-—- 0
i1l : D = chainComplex(dl,d2,d3,d4)

1 1
011 =0 <-—-R <—-R <—-0<x-—-0

0 1 2 3 4
011 : ChainComplex

i12

f0 = map(R~0, R0, 0);
ol2 : Matrix 0 <-—- 0
i13 : f1 = map(R~1, R"1, matrix{{0_R}});

1 1
013 : Matrix R <--- R

i14 : £f2 = map(R"2, R~1, {{b},{-a}});

2 1
ol4 : Matrix R <--- R

i15 : f3 = map(R"1, R0, 0);

1
0l5 : Matrix R <--—-0

i16 : f4 = map(R~0, R0, 0);
0l6 : Matrix 0 <-——— 0

i17 : f = map(C,D,i -> if i==0 then f0 else(
if i==1 then f1 else (
if i==2 then f2 else (
if i == 3 then f3 else (
if i==4 then f4)))))

0l7 =0 : 0 <=———- 0:0
0
1 1
1: R <———- R : 1
0
2 1
2 : R <————m—mmm- R : 2
| b |
| -a |
1
3:R <——-—- 0:3
0
4 ;0 <————- 0:4

13

017 : ChainComplexMap
Here’s what we can do if we prefer to write a list with the maps in £:

i18 : f = map(C,D,i -> {f0,f1,f2,£f3,f4}_1i)

018 =0 : 0 <————- 0:0
0
1 1
1 R <———- R 1
0
2 1
2 1 R <———m—m-—- R : 2
| o |
| -a |
1
3 R <—-—-—-—- 0 3
0
4 0 <————- 0 4
0

018 : ChainComplexMap

If we prefer to do the same with the Complexes package, one advantage is that map does
receive (target, source, list of maps).

i42 : C = complex({cl,c2,c3,cd});
i43 : D = complex({d1,d2,d3,d4});
i44 : f = map(C,D,{f0,f1,f2,£3,f4})
2 1
044 = 2 : R <——mmmm—m- R ¢ 2
| b |
| -a |

044 : ComplexMap

14

