Problem Set 0 Introductory Macaulay2 problems

Problem 1.

a) Install Macaulay2. ${ }^{1}$ Hardcore version: install emacs and run Macaulay2 through emacs.
b) Make an. m 2 file setting up a field k, a polynomial ring R over k, a nontrivial ideal I in R, the R-module $M=R / I$ and the ring $S=R / I$.

Problem 2 (Subalgebras). Use Macaulay2 to find:
a) A presentation for the \mathbb{Q}-algebra $\mathbb{Q}[x y, x u, y v, u v] \subseteq \mathbb{Q}[x, y, u, v]$.
b) A presentation for the k-algebra U, where $k=\mathbb{Z} / 101$ and

$$
k\left[\begin{array}{lll}
u x & u y & u z \\
v x & v y & v z
\end{array}\right] \subseteq \frac{k[u, v, x, y, z]}{\left(x^{3}+y^{3}+z^{3}\right)} .
$$

Problem 3 (Graded rings).
a) In Macaulay 2 , set up $A=\mathbb{Q}\left[s^{2}, s t, t^{2}\right]$ as an \mathbb{N}^{2}-graded ring with the grading induced by setting $s^{2}, s t, t^{2}$ as homogeneous elements of degrees

$$
\operatorname{deg}\left(s^{2}\right)=(2,0) \quad \operatorname{deg}(s t)=(1,1) \quad \operatorname{deg}\left(t^{2}\right)=(0,2) .
$$

b) The ring $R=\mathbb{Q}\left[t^{3}, t^{13}, t^{42}\right]$ is a graded subring of $\mathbb{Q}[t]$ with the standard grading, meaning that the graded structure on $\mathbb{Q}[t]$ induces a grading on R. Set up R (with this grading) in Macaulay 2 .
Problem 4 (Modules). Consider the domain $R=\mathbb{Q}[x, y, z, a, b, c] /(x b-a c, y c-b z, x c-a z)$. Set up the following R-modules, making sure Macaulay2 actually sees them as modules over R :
a) The ideal $I=(x, a)$ viewed as an R-module.
b) The R-module $N=\mathbb{Q}$.
c) The 2 -generated R-module $M=R f+R g$, where the generators f, g satisfy the relations

$$
y f-x g=0 \quad b f-c g=0 \quad c f-z g=0 .
$$

d) The submodule of R^{3} generated by (a, b, c) and (x, y, z).

Problem 5 (Complexes in Macaulay2). Let $R=\mathbb{Q}[x, y, z] /\left(x^{2}, x y\right)$.
a) Consider the bounded complex

$$
\left.C=R \xrightarrow[3]{\left(\begin{array}{c}
z \\
-y \\
x
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{ccc}
-y & -z & 0 \\
x & 0 & -z \\
0 & x & y
\end{array}\right)} R^{3} \xrightarrow{1} \begin{array}{lll}
x & y & z
\end{array}\right) \longrightarrow
$$

Set C up in Macaulay 2 and compute its homology. For which n is $\mathrm{H}_{n}(C)=0$?

[^0]b) Check that f below is a map of complexes, and compute its kernel, cokernel, and homology.

[^0]: ${ }^{1}$ If you don't have access to a computer, or if your computer runs only Windows, come talk to me about it.

