Problem Set 1

Primary Decomposition and the definition of symbolic powers

Problem 1. Let $R = \mathbb{Z}[\sqrt{-5}]$. While $6 \in R$ cannot be written as a unique product of irreducibles, we are going to show that the ideal I = (6) does have a unique primary decomposition. Unfortunately, Macaulay2 cannot take primary decompositions over \mathbb{Z} , but this one we can do the old fashioned way.

- a) Prove that (2) is a primary ideal.
- b) Prove that (3) is *not* a primary ideal.
- c) Prove that $(3, 1 + \sqrt{-5})$ and $(3, 1 \sqrt{-5})$ are both primary.
- d) Show that $(6) = (2) \cap (3, 1 + \sqrt{-5}) \cap (3, 1 \sqrt{-5}).$
- e) Show that this primary decomposition is unique.

Problem 2. Let *I* and *J* be ideals in a noetherian ring *R*. Show that $I \subseteq J$ if and only if $I_P \subseteq J_P$ for all $P \in Ass(J)$.

Problem 3 (2 points). Let I, J, and L be ideals in a noetherian ring R.

- a) There exists n such that $(I: J^{\infty}) = (I: J^n)$.
- b) If Q is a P-primary ideal, then

$$(Q: J^{\infty}) = \begin{cases} Q & \text{if } J \nsubseteq P \\ R & \text{if } J \subseteq P \end{cases}$$

- c) $(I \cap J : L^{\infty}) = (I : L^{\infty}) \cap (J : L^{\infty}).$
- d) Given a primary decomposition $I = Q_1 \cap \cdots \cap Q_k$,

$$(I:J^{\infty}) = \bigcap_{J \not\subseteq \sqrt{Q_i}} Q_i.$$

e) If $Ass(I) = Min(I) = \{P_1, \ldots, P_k\}$, then for each *i* there exists an element $x_i \in R$ such that the P_i -primary component of *I* is given by $(I : x_i^{\infty})$.

Problem 4. Let *I* be an ideal with no embedded primes in a noetherian ring *R*. Show that there exists an ideal *J*, which we can take to be principal, such that $I^{(n)} = (I^n : J^\infty)$ for all $n \ge 1$.

Problem 5 (Minimal primes and support).

- a) Describe supp (I/I^2) , where I = (xz) in $R = \mathbb{C}[x, y, z]/(xy, yz)$.
- b) Find all the minimal primes of J = (ab, bc, cd, ad) in k[a, b, c, d] over any field k.
- c) Find the minimal primes of the ring S, where

$$S = \mathbb{Q} \begin{bmatrix} ux & uy & uz \\ vx & vy & vz \end{bmatrix} \subseteq \frac{\mathbb{Q}[u, v, x, y, z]}{(x^3 + y^3 + z^3)}.$$

Fix a field k. The *n*th Veronese ring in d variables is the subalgebra of $R = k[x_1, \ldots, x_d]$ generated by all the degree n monomials in x_1, \ldots, x_d , which we will denote by $R^{(n)}$. For example, $k[x, y]^{(2)} = k[x^2, xy, y^2]$. There are $N := \binom{n+d-1}{n}$ algebra generators for $R^{(n)}$, so we can write it as a quotient of $k[y_1, \ldots, y_N]$; more precisely, the map $\pi : k[y_1, \ldots, y_N] \to R^{(n)}$ that sends each y_i to a different monomial $x_1^{a_1} \cdots x_d^{a_d}$ with $a_1 + \cdots + a_d = n$ is surjective, and if $P = \ker \pi$, $R^{(n)} \cong k[y_1, \ldots, y_N]/P$. We call this ideal P the **defining ideal** of $R^{(n)}$, though P is only defined up to the order of y_1, \ldots, y_N .

Problem 6. Let P be the defining ideal of $\mathbb{Q}[x,y]^{(3)}$ and Q be the defining ideal of $\mathbb{Q}[x,y,z]^{(2)}$.

- a) Is P a prime ideal? Is Q a prime ideal? Why?
- b) Without running any packages besides those that come preloaded with Macaulay2, find $P^{(2)}$ and $Q^{(2)}$.
- c) Is $P^2 = P^{(2)}$? Is $Q^2 = Q^{(2)}$?