Problem Set 1
 Primary Decomposition and the definition of symbolic powers

Problem 1. Let $R=\mathbb{Z}[\sqrt{-5}]$. While $6 \in R$ cannot be written as a unique product of irreducibles, we are going to show that the ideal $I=(6)$ does have a unique primary decomposition. Unfortunately, Macaulay2 cannot take primary decompositions over \mathbb{Z}, but this one we can do the old fashioned way.
a) Prove that (2) is a primary ideal.
b) Prove that (3) is not a primary ideal.
c) Prove that $(3,1+\sqrt{-5})$ and $(3,1-\sqrt{-5})$ are both primary.
d) Show that $(6)=(2) \cap(3,1+\sqrt{-5}) \cap(3,1-\sqrt{-5})$.
e) Show that this primary decomposition is unique.

Problem 2. Let I and J be ideals in a noetherian ring R. Show that $I \subseteq J$ if and only if $I_{P} \subseteq J_{P}$ for all $P \in \operatorname{Ass}(J)$.

Problem 3 (2 points). Let I, J, and L be ideals in a noetherian ring R.
a) There exists n such that $\left(I: J^{\infty}\right)=\left(I: J^{n}\right)$.
b) If Q is a P-primary ideal, then

$$
\left(Q: J^{\infty}\right)=\left\{\begin{array}{ll}
Q & \text { if } J \nsubseteq P \\
R & \text { if } J \subseteq P
\end{array} .\right.
$$

c) $\left(I \cap J: L^{\infty}\right)=\left(I: L^{\infty}\right) \cap\left(J: L^{\infty}\right)$.
d) Given a primary decomposition $I=Q_{1} \cap \cdots \cap Q_{k}$,

$$
\left(I: J^{\infty}\right)=\bigcap_{J \nsubseteq \sqrt{Q_{i}}} Q_{i} .
$$

e) If $\operatorname{Ass}(I)=\operatorname{Min}(I)=\left\{P_{1}, \ldots, P_{k}\right\}$, then for each i there exists an element $x_{i} \in R$ such that the P_{i}-primary component of I is given by $\left(I: x_{i}^{\infty}\right)$.

Problem 4. Let I be an ideal with no embedded primes in a noetherian ring R. Show that there exists an ideal J, which we can take to be principal, such that $I^{(n)}=\left(I^{n}: J^{\infty}\right)$ for all $n \geqslant 1$.

Problem 5 (Minimal primes and support).
a) $\operatorname{Describe} \operatorname{supp}\left(I / I^{2}\right)$, where $I=(x z)$ in $R=\mathbb{C}[x, y, z] /(x y, y z)$.
b) Find all the minimal primes of $J=(a b, b c, c d, a d)$ in $k[a, b, c, d]$ over any field k.
c) Find the minimal primes of the ring S, where

$$
S=\mathbb{Q}\left[\begin{array}{lll}
u x & u y & u z \\
v x & v y & v z
\end{array}\right] \subseteq \frac{\mathbb{Q}[u, v, x, y, z]}{\left(x^{3}+y^{3}+z^{3}\right)} .
$$

Fix a field k. The nth Veronese ring in d variables is the subalgebra of $R=k\left[x_{1}, \ldots, x_{d}\right]$ generated by all the degree n monomials in x_{1}, \ldots, x_{d}, which we will denote by $R^{(n)}$. For example, $k[x, y]^{(2)}=k\left[x^{2}, x y, y^{2}\right]$. There are $N:=\binom{n+d-1}{n}$ algebra generators for $R^{(n)}$, so we can write it as a quotient of $k\left[y_{1}, \ldots, y_{N}\right]$; more precisely, the map $\pi: k\left[y_{1}, \ldots, y_{N}\right] \rightarrow R^{(n)}$ that sends each y_{i} to a different monomial $x_{1}^{a_{1}} \cdots x_{d}^{a_{d}}$ with $a_{1}+\cdots+a_{d}=n$ is surjective, and if $P=\operatorname{ker} \pi$, $R^{(n)} \cong k\left[y_{1}, \ldots, y_{N}\right] / P$. We call this ideal P the defining ideal of $R^{(n)}$, though P is only defined up to the order of y_{1}, \ldots, y_{N}.

Problem 6. Let P be the defining ideal of $\mathbb{Q}[x, y]^{(3)}$ and Q be the defining ideal of $\mathbb{Q}[x, y, z]^{(2)}$.
a) Is P a prime ideal? Is Q a prime ideal? Why?
b) Without running any packages besides those that come preloaded with Macaulay2, find $P^{(2)}$ and $Q^{(2)}$.
c) Is $P^{2}=P^{(2)}$? Is $Q^{2}=Q^{(2)}$?

