Problem Set 2

Problem 1. Let I be an ideal with no embedded primes in a noetherian ring R. Show that there exists an ideal J, which we can take to be principal, such that $I^{(n)}=\left(I^{n}: J^{\infty}\right)$ for all $n \geqslant 1$.

Problem 2. Let $R=\mathbb{Q}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$, and consider the ideal I you can define in Macaulay2 as follows:

```
M = matrix{{0,-x_1,-x_3,x_2,-x_1,x_4,-x_3},{x_1,0,-x_3,x_2,x_1,-x_4,-x_1},
{x_3,x_3,0,0,-x_3,x_1,x_4},{-x_2,-x_2,0,0,-x_4, x_2,0},
```



```
I = pfaffians(6,M)
```

Using only the packages that come preloaded with Macaulay2, compute $I^{(2)}$ and $I^{(3)}$. Is $I^{(2)}=I^{2}$? Is $I^{(3)}=I^{3}$?

Problem 3. Find all the symbolic powers of $I=(6)$ in $\mathbb{Z}[\sqrt{-5}]$.
Problem 4. Let x be a regular element in a ring R, meaning that $x a=0 \Longrightarrow a=0$.
a) Show that $\left(x^{n}: x^{n-1}\right)=(x)$ for all $n \geqslant 1$.
b) Show that $\operatorname{Ass}\left(x^{n}\right)=\operatorname{Ass}(x)$ for all $n \geqslant 1$.

Problem 5. Let $R=k[x, y, z] /\left(x y-z^{c}\right)$ where k is a field and $c \geqslant 2$, and let $P=(x, z)$.
a) Show that $\left(x^{n}\right)$ is a primary ideal for all $n \geqslant 1$. What is its radical?
b) Prove that $P^{(c n)}=\left(x^{n}\right)$ for all $n \geqslant 1$.
c) Prove that $P^{(n)} \neq P^{n}$ for all $n \geqslant 2$.

Problem 6. Height and dimension.
a) Given any field k, find the height of $J=(a b, b c, c d, a d)$ in $R=k[a, b, c, d]$ and $\operatorname{dim}(R / J)$.
b) Find the dimension of the ring $S=\mathbb{Q}\left[x^{3} y^{3}, x^{3} y^{2} z, x^{2} z^{3}\right] \subseteq \mathbb{Q}[x, y, z]$.
c) Let I be the defining ideal of the curve parametrized by $\left(t^{13}, t^{42}, t^{73}\right)$ over \mathbb{Q}. Find the height of I, and notice that height $(I)<\mu(I)$.
d) Let $R=\mathbb{Q}[x, y, z]$, and $I=\left(x^{3}, x^{2} y, x^{2} z, x y z\right)$. Find the dimension of R / I and the height of I.
e) Find the dimension of the module I / I^{2}, where $I=(x z)$ in $R=\mathbb{C}[x, y, z] /(x y, y z)$.

Problem 7. Let k be any field.
a) Is $x^{2}, x y, y^{2}$ a regular sequence on $\mathbb{Q}\left[x^{2}, x y, y^{2}\right]$?
b) Is $x^{3}-y z, y^{2}-x z, z^{2}-x^{2} y$ a regular sequence on $k[x, y, z]$? (Hint: you can use Example 2.4.)
c) What is the maximal possible length of a regular sequence on $R=k \llbracket x, y \rrbracket /\left(x^{2}, x y\right)$?
d) Let $R=k \llbracket x, y \rrbracket /\left(x^{2}, x y\right)$. Find a regular sequence on $M=R /(x)$ of maximal possible length.

