Problem Set 4

To solve these problems, you are not allowed to use any additional Macaulay2 packages besides the Complexes package and the ones that are automatically loaded with Macaulay2.

Problem 1. Let k be any field and consider the prime ideal in $k[x, y, z]$

$$
P=\left(x^{3}-y z, y^{2}-x z, z^{2}-x^{2} y\right)
$$

defining the curve parametrized by $\left(t^{3}, t^{4}, t^{5}\right)$. Give (with proof!) two different ideals J such that $P^{(n)}=\left(P^{n}: J^{\infty}\right)$ for all $n \geqslant 1$, and test your proposed ideals J in Macaulay 2 with your own choice of k and n.

Problem 2. Let R be a finitely generated k-algebra, and P a prime ideal in R. Show that $P^{\langle n\rangle}$ is P-primary for all $n \geqslant 1$.

Problem 3. Let k be any field, $d \geqslant 1$, and $R=k\left[x_{1}, \ldots, x_{d}\right]$. Let

$$
I=\left(\prod_{i \neq j} x_{i} \mid 1 \leqslant j \leqslant d\right)
$$

be the monomial ideal generated by all the squarefree monomials of degree $d-1$.
a) Find an irredundant primary decomposition of I. What is the height of I ?
b) Find a set of generators for $I^{(n)}$ for each $n \geqslant 1$.
c) Show that $I^{(2 n-2)} \nsubseteq I^{n}$ for all $n<d$.

Problem 4. Let I be a squarefree monomial ideal in $R=k\left[x_{1}, \ldots, x_{d}\right]$ and $\mathfrak{m}=\left(x_{1}, \ldots, x_{d}\right)$. Show that $I^{(n+1)} \subseteq \mathfrak{m} I^{(n)}$ for all $n \geqslant 1$.

Problem 5. The complete graph K_{n} is the simple graph on n vertices that has all the possible edges. Let $I=I\left(K_{n}\right)$ be the edge ideal of K_{n} with $n \geqslant 3$. Find generators for $I^{(s)}$ for all s and show that $I^{(s)} \neq I^{s}$ for infinitely many values of s.

