Problem Set 5

To solve these problems, you are not allowed to use any additional Macaulay2 packages besides the Complexes package and the ones that are automatically loaded with Macaulay2.

Definition (Jacobian ideal). Let k be a field and $R=k\left[x_{1}, \ldots, x_{n}\right] / I$, where $I=\left(f_{1}, \ldots, f_{r}\right)$ has pure height h. The Jacobian matrix of R is the matrix given by

$$
\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
& \ddots & \\
\frac{\partial f_{r}}{\partial x_{1}} & \cdots & \frac{\partial f_{r}}{\partial x_{n}}
\end{array}\right)
$$

The jacobian ideal of R is the ideal generated by the h-minors of the Jacobian matrix.
Turns out the Jacobian ideal is indeed well-defined - meaning, our definition does not depend on the choice of presentation for R - and that it determines the nonsmooth locus of R. For proofs of these well-known facts, see Section 16.6 of Eisenbud's Commutative Algebra with a view towards algebraic geometry.

Theorem (Jacobian criterion). Let $R=k\left[x_{1}, \ldots, x_{n}\right] / I$ with k a perfect field, and assume that I has pure height h. The Jacobian ideal J defines the nonsmooth locus of R : a prime P in $k\left[x_{1}, \ldots, x_{n}\right]$ contains J if and only if R_{P} is not a regular ring.

Problem 1. Let (R, \mathfrak{m}) be a regular local ring and I be an ideal in R.
a) Show that there is a short exact sequence

$$
0 \longrightarrow \frac{I+\mathfrak{m}^{2}}{\mathfrak{m}^{2}} \longrightarrow \mathfrak{m} / \mathfrak{m}^{2} \longrightarrow \frac{\mathfrak{m}}{\mathfrak{m}^{2}+I} \longrightarrow 0
$$

and conclude that $\operatorname{dim}_{k}\left(\frac{I+\mathfrak{m}^{2}}{\mathfrak{m}^{2}}\right)=\operatorname{embdim}(R)-\operatorname{embdim}(R / I)$.
b) Show that if R / I is regular, then there exists a minimal set of generators x_{1}, \ldots, x_{d} for \mathfrak{m} such that $I=\left(x_{1}, \ldots, x_{n}\right)$ for some n.
c) Conclude that if I is not generated by a regular sequence, then R / I is not regular.

Problem 2. Let I be a radical ideal in $R=k\left[x_{1}, \ldots, x_{n}\right]$, where k is a perfect field, and let J be the Jacobian ideal of I. Prove that $I^{(n)}=\left(I^{n}: J^{\infty}\right)$ for all $n \geqslant 1$.

Problem 3. Let k be a field, $R=k[x, y, z]$, and $I=(x y, x z, y z)$. Find the Jacobian ideal J of I, and show directly that $I^{(n)}=\left(I^{n}: J^{\infty}\right)$ for all $n \geqslant 1$ without using Problem 2.

Problem 4. For each of the following ideals I, find an element t such that $I^{(n)}=\left(I^{n}: t^{\infty}\right)$ for all $n \geqslant 1$.
a) $I=(x z, x w, y z, y w)$ in $R=k[x, y, z, w]$, where k is any field.
b) I is the defining ideal of the second Veronese in 3 variables $\mathbb{Q}[x, y, z]^{(2)}$.

Problem 5. Let k be a field, $R=k[x, y, z]$, and $I=(x y, x z, y z)$.
a) Show that $I^{(2 n)}=\left(I^{(2)}\right)^{n}$ for all $n \geqslant 1$.
b) Show that $I^{(2 n+1)}=I\left(I^{(2)}\right)^{n}$ for all $n \geqslant 1$.
c) Show that the symbolic Rees algebra of I is a noetherian ring.

Problem 6. Let $R \rightarrow S$ be a flat ring homomorphism.
a) Show that for every ideal I in R and every $x \in R,\left(I:_{R} x\right) S=\left(I S:_{S} x\right)$.

Hint: what is the kernel of $R / I \xrightarrow{x} R / I$?
b) Show that I and J are ideals in R, then $I S \cap J S=(I \cap J) S$.

Hint: what is the kernel of the canonical map $R \rightarrow R / I \oplus R / J$?
c) Show that if I and J are ideals in R with J finitely generated, then $\left(I:_{R} J\right) S=\left(I S:_{S} J S\right)$.

Problem 7. Let I be a squarefree monomial ideal in $R=k\left[x_{1}, \ldots, x_{d}\right]$, where k is a perfect field of prime characteristic p.
a) Show that R / I is F-pure.
b) Show that R / I is strongly F-regular if and only if I is generated by variables.

Problem 8. Let I be a radical ideal and fix $n \geqslant 1$. Show that $\left(I^{n}: I^{(n)}\right)$ must contain an element not in any minimal prime of I.

