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This is a preliminary version of the notes for a lectures series at the summer school
BRIDGES, hosted by the University of Utah in July 2021 and aimed at advanced under-
graduates and graduate students in their first few years. These notes are very loosely based
on two previous lecture series, both aimed at advanced commutative algebra students: a
lecture series at the Escuela de Outoño en Álgebra Conmutativa (Fall School in Commuta-
tive Algebra) in November 2019 at CIMAT, in Guanajuato, Mexico, which I delivered in
spanish, and a lecture series at the RTG Advanced Summer Mini-course in Commutative
Algebra at the University of Utah, in May 2018. Both those previous notes contain a lot
more material, but less detail in the early sections. While the present notes do not assume
previous knowledge in commutative algebra, the others do assume at least a first course.

I thank the organizers of all three schools (each), the other speakers, and the students who
participated in each lecture series for their comments and suggestions. I also thank Manolis
Tsakiris for suggesting a clarification to the original version of the notes. A special thank
you to Sandra Sandoval, who read the spanish version of the CIMAT notes very carefully
and corrected my broken portuñol to actual spanish.

These notes are in no way comprehensive, but more about symbolic powers can be found
in the references — for example, see the surveys [DDSG+18] and [SS17]. We assume only
a first course in algebra, though we will need some fundamental concepts and results in
commutative algebra that one would learn in a first course, which we will introduce quickly
without detail. The details can be found in any standard commutative algebra reference
book, such as [AM69], [Mat80], or [BH93], or my commutative algebra class notes.
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1 Day 1: Algebra

Our goal is to study symbolic powers. Besides being an interesting subject in its own right,
symbolic powers appear as auxiliary tools in several important results in commutative al-
gebra, such as Krull’s Principal Ideal Theorem or the Hartshorne—Lichtenbaum Vanishing
Theorem on Local Cohomology. Symbolic powers arise naturally from the theory of primary
decomposition, and thanks to the Zariski–Nagata theorem, they also contain geometric in-
formation. We will start our story from the algebraic perspective.

1.1 Primary decomposition and associated primes

Noetherian rings are commutative algebraists’ favorite rings. Many rings of interest are
noetherian, including every quotient of a polynomial ring in finitely many variables over a
field. Assuming the ambient ring is noetherian is considered a mild assumption in commuta-
tive algebra, and from now on we will always assume our rings are noetherian, as one often
does.

Definition 1.1. Let R be a ring. We say R is noetherian if every ideal in R is finitely
generated.

It is most common to first define noetherianity via an equivalent condition called the
ascending chain condition.

Exercise 1. Show that the following are equivalent:

1) Every ascending chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

eventually stabilizes: there is some N for which In = In+1 for all n > N .

2) Every nonempty family of ideals has a maximal element (under ⊆).

3) Every ideal of R is finitely generated.

One of the fundamental classical results in commutative algebra is the fact that every
ideal in any noetherian ring has a primary decomposition. This can be thought of as a
generalization of the Fundamental Theorem of Arithmetic:

Theorem 1.2. Given any positive integer n, there exist distinct primes p1, . . . , pk and inte-
gers a1, . . . , ak > 1 such that

n = (p1)
a1 · · · (pk)ak .

Moreover, this decomposition is unique up to the order of the factors.

We will soon discover that such a product is a primary decomposition, perhaps after some
light rewriting. But before we get to the what and the how of primary decomposition, it is
worth discussing the why. If we wanted to extend the Fundamental Theorem of Arithmetic
to other rings, our first attempt might involve irreducible elements. Unfortunately — or
fortunately, since after all, it makes the story more interesting — we don’t have to go far
to find rings where we cannot write elements as a unique product of irreducibles up to
multiplication by a unit.
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Example 1.3. In Z[
√
−5],

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

are two different ways to write 6 as a product of irreducible elements. In fact, we cannot
obtain 2 nor 3 by multiplying 1 +

√
−5 or 1−

√
−5 by a unit.

Instead of writing elements as products of irreducibles, we will write ideals in terms of
primary ideals.

Definition 1.4. We say that an ideal is primary if

xy ∈ I =⇒ x ∈ I or yn ∈ I for some n > 1.

In fact, we can write this definition in a slightly fancier looking fashion using the concept
of radical of an ideal.

Definition 1.5. The radical of an ideal I in a ring R is the ideal
√
I := {f ∈ R | fn ∈ I for some n}.

An ideal I is a radical ideal if I =
√
I.

Exercise 2. Given an ideal I in any ring R, its radical
√
I is also an ideal.

Example 1.6. Prime ideals are radical.

So now we can say an ideal I is primary if

xy ∈ I =⇒ x ∈ I or y ∈
√
I.

Remark 1.7. From the definition, it follows that the radical of a primary ideal is always
a prime ideal. If the radical of a primary ideal Q is the prime ideal P , we say that Q is
P -primary.

More generally, one can show that the radical of any ideal I is always an intersection of
primes: √

I =
⋂
P⊇I

P is prime

P.

This intersection is usually quite massive, but we can improve it considerably by noting that
if P ⊆ Q are both primes containing I, then Q can be deleted from this intersection.

Definition 1.8. A prime P is a minimal prime of an ideal I is P ⊇ I and P is minimal
with respect to this property, meaning that if Q is a prime ideal and I ⊆ Q ⊆ P , we must
have Q = P . We denote the set of minimal primes of I by Min(I).

Over a noetherian ring, every ideal has only finitely many minimal primes. Therefore,
any radical ideal is actually the intersection of finitely many primes.

√
I =

⋂
P⊇I

P is prime

P =
⋂

P∈Min(I)

P.
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Exercise 3. If the radical of an ideal I is maximal, then I is primary.

Note, however, that not all ideals with a prime radical are primary, as we will see in
Example 1.19.

Exercise 4. Show that the primary ideals in Z are precisely the ideals of the form (pn) for
some n > 1 and some prime p.

This example can be a bit misleading, as it makes it semm like primary ideals are simply
powers of a prime ideals — they are not! We will discuss this in more detail more soon.

Definition 1.9 (Irredundant Primary Decomposition). A primary decomposition of the
ideal I consists of primary ideals Q1, . . . , Qn such that I = Q1 ∩ · · · ∩Qn. An irredundant
primary decomposition of I is one such that no Qi can be omitted, and such that

√
Qi 6=

√
Qj

for all i 6= j.

Given a primary decomposition for I, we can always slightly modify it into an irredundant
primary decomposition, by deleting unnecessary components and intersecting primary ideals
with the same radical.

Exercise 5. Show that a finite intersection of P -primary ideals is a P -primary ideal.

As advertised, primary decompositions always exist, modulo a reasonable restriction: we
need our ring to be noetherian.

Theorem 1.10 (Lasker [Las05], Noether [Noe21]). Every ideal in a noetherian ring has a
primary decomposition.

Example 1.11. Here are some examples of primary decompositions:

a) The ideals in Z are all principal. Given any integer n, if we write n as a product of powers
of distinct primes, say n = pa11 · · · p

ak
k , then

(n) = (pa11 ) ∩ · · · ∩ (pakk )

is an irredundant primary decomposition for the ideal (n).

b) Whenever I is a radical ideal, we mentioned above that I coincides with the intersection
of its minimal primes; there are finitely many such primes as long as our ambient ring is
noetherian. Since prime ideals are primary, writing I as the intersection of its minimal
primes gives a primary decomposition for I.

c) The ideal (xy, xz, yz) in C[x, y, z] is radical, so we just need to find its minimal primes.
One can check that the decomposition is (xy, xz, yz) = (x, y) ∩ (x, z) ∩ (y, z). More
generally, the monomial ideals that are radical are precisely those that are squarefree,
and the primary components of a monomial ideal are also monomial.

d) Primary decompositions, even irredundant ones, are not unique. For example, over any
field k, the ideal (x2, xy) in k[x, y] has infinitely many irredundant primary decomposi-
tions: given any n > 1, we have (x2, xy) = (x) ∩ (x2, xy, yn). One thing all of these have
in common is the radicals of the primary components: they are always (x) and (x, y).
Notice also that the component with radical (x) also stays the same in all the examples,
which is not a coincidence.
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What information can we extract from a primary decomposition? Is there any sense
in which primary decompositions are unique? What primes can appear as radicals of the
primary components of I? Let’s start with the last question: the prime ideals that appear
are indeed interesting.

Definition 1.12 (Associated Prime). Let M be an R-module. A prime ideal P is an
associated prime of M if the following equivalent conditions hold:

(a) There exists a non-zero element m ∈M such that P = annR(m) := {r ∈ R | rm = 0}.

(b) There is an inclusion of R/P into M .

If I is an ideal of R, we refer to an associated prime of the R-module R/I as simply an
associated prime of I. We will denote the set of associated primes of I by Ass(R/I).

Remark 1.13. If you’re not used to thinking about modules, the annihilator annR(m) of
an element m ∈ M is simply the set of elements in R that kill m, meaning those r ∈ R
with rm = 0. Requiring that P is the annihilator of some element in R/I is asking for some
element a+ I in R/I such that

P = {r ∈ R | r(a+ I) = 0 in R/I},

which we can rephrase as saying that there exists some a ∈ R such that

P = {r ∈ R | ra ∈ I}.

The annihilators of elements in R/I (or any module, for that matter) are not necessarily
prime ideals, but those that actually are primes are especially interesting.

The philosophy is that the set of associated primes of an ideal or module should give us
lots of information about the ideal or module in question. Over a noetherian ring, the set of
associated primes of an ideal I 6= 0 is always non-empty and finite. Moreover, Ass(R/I) ⊆
Supp(R/I), where Supp(M) denotes the support of the module M , meaning the set of primes
p such that Mp 6= 0. In fact, the minimal primes of the support of R/I coincide with the
minimal associated primes of I, which are precisely all the minimal primes of I.

As stated above, every minimal prime over I is actually an associated prime of I. If P is
associated to I but not a minimal prime of I, we say that P is an embedded prime of I.

Exercise 6. Show that Q is P -primary if and only if Ass(R/Q) = {P}.

Given an ideal I, we will be interested not only in its associated primes, but also in
the associated primes of its powers. Fortunately, the set of prime ideals that are associated
to some power of I is finite, a result first proved by Ratliff [Rat76] and then extended by
Brodmann [Bro79].

Theorem 1.14 (Brodmann, 1979). Let R be a noetherian domain and I 6= 0 an ideal in R.
For n sufficiently large, Ass (R/In) is independent of n. In particular,⋃

n>1

Ass (R/In)

is a finite set.
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Turns out that the associated primes of I are precisely the prime ideals that appear when
we take an irredundant primary decomposition of I.

Theorem 1.15 (Uniqueness theorems). Let I = Q1 ∩ · · · ∩ Qn be an irredundant primary
decomposition of I, where Qi is a Pi-primary ideal for each i. Then

Ass(R/I) = {P1, . . . , Pn} .

Moreover, if Pi is minimal in Ass(R/I), then Qi is unique, and given by

Qi = IRPi
∩R,

where − ∩R denotes the pre-image in R via the natural map R −→ RP .

The notation RP above refers to the localization of R at P . This is a standard construc-
tion in commutative algebra: we create a new ring from R by adding in inverses to all the
elements outside of P , which results in a local ring with maximal ideal given by the image of
P . Informally, think of RP as zooming in at P . Formally, the elements in RP are equivalence
classes with representatives r

s
, where r, s ∈ R and s /∈ P , with

r

s
=
u

t
whenever v(rt− su) for some v /∈ P.

When R is a domain, we can drop the v above, and simply ask if rt = su. There is a natural
ring homomorphism R → RP sending each r ∈ R to r

1
, and the notation IRP above refers

to the image of I under this map, meaning the ideal generated by all a
1

with a ∈ I. So
whenever P is a minimal prime of I, Theorem 1.15 says that the P -primary component in
any irredundant primary decomposition of I is

IRP ∩R = {r ∈ R | sr ∈ I for some s /∈ P}.

Theorem 1.15 does not say anything about the embedded components of I. Indeed, the
primary components corresponding to embedded primes are not necessarily unique.

Example 1.16. Let’s look back at our last example, the ideal I = (x2, xy) in k[x, y]. All
its irredundant primary decompositions must have precisely two components, one for each
associated prime of I, which are (x) and (x, y). The minimal component is always (x) itself,
since when we localize at (x), y becomes invertible and I(x) = (x)(x). The other component
is (x, y)-primary, since (x, y) is the only embedded prime of I. That embedded component,
as we saw before, can now take many forms, such as (x2, xy, yn) for any n.

1.2 Symbolic powers: definition and basic properties

We are interested in studying the primary decompositions of powers of ideals.

Definition 1.17. Given an ideal I, the nth power of I is the ideal

In := (f1 · · · fn | fi ∈ I) .
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It is not difficult to show that given a set of generators for I, say I = (g1, . . . , gk), the
nth power of I is generated by the n-fold products of the gi.

Example 1.18. Let R be any ring and f, g ∈ R. Then (f, g)2 = (f 2, fg, g2).

Exercise 7. Show that
√
In =

√
I for any ideal I. In particular, if P is prime, then√

P n = P .

Exercise 8. Show that if P is a prime ideal, Min(P n) = {P} for any n > 1.

Say we start with a prime ideal P . The powers of P are not necessarily primary; in fact,
they usually are not primary.

Example 1.19. Consider a field k and an integer n > 1 and let R = k[x, y, z]/(xy − zn).
The prime ideal P = (x, z) in R satisfies

xy = zn ∈ P n, x /∈ P n and y /∈
√
P n = P.

This shows that P n is not a primary ideal, even though its radical is the prime P .

Still, we can write a primary decomposition for P n. Whenever P n is not primary, it must
necessarily have embedded components. We are, however, more interested in the minimal
component of P n.

Definition 1.20. Let P be a prime ideal. The nth symbolic power of P is the ideal

P (n) := {r ∈ R | sr ∈ P n for some s /∈ P}.

The following equivalent properties completely characterize the symbolic powers of a
prime P :

• The n-th symbolic power of a P is the unique P -primary component in an irredundant
primary decomposition of P n, by Theorem 1.15.

• The n-th symbolic power of P is the smallest P -primary ideal containing P n.

The equality P (n) = P n is thus equivalent to the condition that P n is a primary ideal.

Exercise 9. Show that if P is prime, P (n) is the smallest P -primary ideal containing P n.

Exercise 10. Show that if m is a maximal ideal, mn = m(n) for all n.

We can define symbolic powers much more generally. For technical reasons, we will focus
only on radical ideals. As we will see on Day 2, this is a reasonable assumption, and to some
extent the only situation that matters from a geometric point of view.

Definition 1.21 (Symbolic Powers). Let I be a radical ideal in a a noetherian ring R. The
n-th symbolic power of I is the ideal

I(n) =
⋂

P∈Min(I)

(InRP ∩R) .
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So say that I is the radical ideal

I = P1 ∩ · · · ∩ Pk,

where P1, . . . , Pk are the minimal primes of I. In fact, this is the unique irredundant primary
decomposition of I. Now for elementary reasons — a simple exercise if you know the basics
of localization — we have IRPi

= PiRPi
for each i, so our definition of symbolic powers can

be rewritten as
I(n) = P

(n)
1 ∩ · · · ∩ P (n)

k .

Remark 1.22. In the definition above, the assumption that I is radical implies in partic-
ular that it has no embedded primes, meaning that Ass(R/I) = Min(I). We can use the
exact same definition for any ideal with no embedded primes. However, when I does have
embedded primes, we do have two distinct possible definitions for symbolic powers, given by
intersecting InRP ∩ R with P ranging over Ass(I) or Min(I). We will focus on ideals with
no embedded primes, so this distinction is not relevant.

Both definitions have advantages. When we take P ranging over Ass(I), we get I(1) = I,
while taking P ranging over Min(I) means that I(n) coincides with the intersection of the
primary components of In corresponding to its minimal primes.

Be warned that we will assume that I is radical throughout.

Exercise 11. Let I be a radical ideal in a noetherian ring R. Show the following basic
properties hold:

(a) I(1) = I.

(b) For all n > 1, In ⊆ I(n).

(c) Ia ⊆ I(b) if and only if a > b.

(d) If a > b, then I(a) ⊆ I(b).

(e) For all a, b > 1, I(a)I(b) ⊆ I(a+b).

(f) In = I(n) if and only if In has no embedded primes.

As (f) suggests, even if I has no embedded primes, In may still have some embedded
primes, and in particular the converse containments to (b) and (d) do not hold in general.
In particular, the symbolic powers of a prime ideal are not, in general, trivial:

Example 1.23. In Example 1.19 we considered R = k[x, y, z]/(xy−zn) and the prime ideal
P = (x, y). Rephrasing the same computation we did in Example 1.19, we can see that
P n 6= P (n). We have xy = zn ∈ P n but y /∈ P , so x ∈ P (n). However, x /∈ P n, so in fact
P n ( P (n).

The equality of ordinary and symbolic powers did not fail in this example because the
ring is singular: this phenomenon happens even over a nice, well-behaved, polynomial ring.
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Exercise 12. Consider the ideal I = I2(X) of 2× 2 minors of a generic 3× 3 matrix

X =

x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3


in the polynomial ring R = k[X] = k [xi,j | 1 6 i, j 6 3] generated by the variables in X over
a field k. Show that g = detX ∈ P (2), while g /∈ P 2.

9



2 Day 2: Geometry

2.1 Nullstellensatz: a dictionary between algebra and geometry

One motivation to study symbolic powers is that they carry geometrical information. But
first, we need to take a step back and talk about the classical dictionary between algebra
and geometry given by Hilbert’s Nullstellensatz.

Colloquially, we often identify systems of polynomial equations with their solution sets.
We see the system of equations 

xy = 0
yz = 0
xz = 0

and immediately think of the three coordinate lines

and vice-versa. This idea that we are so used to can be formalized, and it is the basis for the
classical connection between commutative algebra and algebraic geometry. On the algebraic
side, we study systems of equations — ideals! — while on the geometry side, we study
solution sets — varieties. At the end of the day, we are all studying the same thing, just
from a different perspective.

Definition 2.1. Let k be a field. For a subset T of k[x1, . . . , xd], we define V(T ) ⊆ kd to be
the set of common zeros or the zero set of the polynomials (equations) in T :

V(T ) = {(a1, . . . , ad) ∈ kd | f(a1, . . . , ad) = 0 for all f ∈ T}.

A subset of kd of the form V(T ) for some subset T is called an algebraic set, or an affine
algebraic variety, which we will often shorten to variety. In summary, a variety is the
set of common solutions of some (possibly infinite) collection of polynomial equations. A
variety is irreducible if it cannot be written as the union of two proper subvarieties.

Note that some authors use the word variety to refer only to irreducible algebraic sets.
Note also that the definitions given here are only completely standard when k is algebraically
closed, so we will focus on the more familiar case of C.

In a reverse way, can also consider the equations that a subset of affine space satisfies.

Definition 2.2. Given any subset X of Ad
k for a field k, define

I(X) = {g(x1, . . . , xd) ∈ k[x1, . . . , xd] | g(a1, . . . , ad) = 0 for all (a1, . . . , ad) ∈ X}.

Exercise 13. I(X) is an ideal in k[x1, . . . , xd] for any X ⊆ kd.

Exercise 14. Here are some properties of the functions V and I:
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a) For any field, we have V(0) = kd and V(1) = ∅.

b) I(∅) = (1) = k[x1, . . . , xd] (the improper ideal).

c) I(kd) = (0) if and only if k is infinite.

d) If I ⊆ J ⊆ k[x1, . . . , xd] then V(I) ⊇ V(J).

e) Given any subsets S ⊆ T of kd, we always have I(S) ⊇ I(T ).

f) If I = (T ) is the ideal generated by the elements of T ⊆ k[x1, . . . , xd], then V(T ) = V(I).

Thanks to Exercise 14 f, we can focus on the solution sets of ideals, rather than of an
arbitrary collection of equations.

Example 2.3. Let

X =

[
x1 x2 x3
y1 y2 y3

]
be a 2× 3 matrix of variables — we usually call these generic matrices — and let

R = k[X] = k

[
x1 x2 x3
y1 y2 y3

]
.

Let ∆1,∆2,∆3 the 2×2-minors of X. Consider the ideal I = (∆1,∆2,∆3). Thinking of these
generators as equations, a solution to the system corresponds to a choice of 2 × 3 matrix
whose 2 × 2 minors all vanish — that is, a matrix of rank at most one. So V(I) is the set
of rank at most one matrices. Note that I ⊆ (x1, x2, x3) =: J , and V(J) is the set of 2 × 3
matrices with top row zero. The containment V(J) ⊆ V(I) we obtain from I ⊆ J translates
to the fact that a 2× 3 matrix with a zero row has rank at most 1.

Note also that the union and intersection of varieties is also a variety.

Exercise 15. Suppose that I and J are ideals in k[x1, . . . , xd].

a) V(I) ∩ V(J) = V(I + J).

b) V(I) ∪ V(J) = V(I ∩ J) = V(IJ).

However, in general IJ 6= I ∩ J .

Exercise 16. Find ideals I and J in k[x1, . . . , xd] such that IJ 6= I ∩ J .

Some theorems about ideals in a polynomial ring now get a new geometric meaning.

Theorem 2.4 (Hilbert’s Basis Theorem). Given any field k, k[x1, . . . , xd] is a Noetherian
ring.

11



Hilbert’s Basis Theorem says that every ideal in k[x1, . . . , xd] is finitely generated, so any
system of equations in k[x1, . . . , xd] can be replaced with a system of finitely many equations.

Given any ideal I, we can now construct a variety V(I), and given a variety X we can
construct a variety X we can construct an ideal I(X). Some varieties are easy to calculate:
for example, we all know that the system of equations

x1 = a1
...

xd = ad

has exactly one solution, the point (a1, . . . , ad), which we can now write in a more sophisti-
cated way as V(x1 − a1, . . . , xd − ad) = {(a1, . . . , ad)}. The ideal (x1 − a1, . . . , xd − ad) can
easily be shown to be maximal in k[x1, . . . , xd]. What is more interesting is that over C, or
more generally any algebraically closed field, there are no other maximal ideals. This gives
us a bijective correspondence between maximal ideals in C[x1, . . . , xd] and points in Cd.

Theorem 2.5 (Nullstellensatz). There is a bijection

Cd

(a1, . . . , ad)

//

� //

{maximal ideals m of C[x1, . . . , xd]}

(x1 − a1, . . . , xd − ad)

The maps I and V give us this bijection between points and maximal ideals. So we can
start from the solution set — a point — and recover an ideal that corresponds to it. What if
we start with some non-maximal ideal I, and consider its solution set V(I) — can we recover
I in some way? Not so fast: many ideals define the same solution set.

Example 2.6. In R = C[x], the ideals In = (xn), for any n > 1, all define the same solution
set V(In) = {0}. In particular, I and V are not inverse constructions: I(V(xn)) = (x) for
all n > 1.

Roughly speaking, the issue that makes I and V fail to be bijections is the fact that if
fn vanishes at a particular point a ∈ kd, then f must also vanish at a. We do get a true
bijection if we restrict to radical ideals.

Theorem 2.7 (Strong Nullstellensatz). There is an order-reversing bijection between the
collection of subvarieties of C and the collection of radical ideals of R = C[x1, . . . , xd]:

{subvarieties of kd}
X

Zk(I)

←→
I7−→
Z←− [

{radical ideals I ⊆ R}
{f ∈ R | X ⊆ V(f)}

I

In particular, given ideals I and J , we have V(I) = V(J) if and only if
√
I =
√
J .

The study of varieties in Cd is therefore the study of radical ideals in C[x1, . . . , xd]. Under
this bijection, irreducible varieties correspond to prime ideals.
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Exercise 17. A variety X ⊆ kd is irreducible if and only if I(X) is prime.

Given a variety X, we can decompose it in irreducible components by writing it as a
union X = V1 ∪ · · · ∪ Vn. We can do this decomposition algebraically, by considering the
radical ideal I = I(X) and writing it as an intersection of its minimal primes. The fact
that we mentioned before that every ideal has finitely many minimal primes now translates
into saying that every variety can be written as a finite union of finitely many irreducible
varieties. More precisely, we can write I(X) as a finite intersection of prime ideals, say

I(X) = P1 ∩ · · · ∩ Pk,

and then
X = V(P1) ∪ · · · ∪ V(Pk)

is a decomposition of X into irreducible components.

Example 2.8. Formalizing the example we started from, the radical ideal I = (xy, xz, yz)
in k[x, y, z] corresponds to the variety X given by the union of the three coordinate axes.

Each of these axes is a variety in its own right, corresponding to the ideals (x, y), (x, z) and
(y, z). The three axes are the irreducible components of X. And indeed, (x, y), (x, z) and
(y, z) are the three minimal primes of I, and

(xy, xz, yz) = (x, y) ∩ (x, z) ∩ (y, z).

In summary, we have the following dictionary between varieties and ideals:

Algebra oo // Geometry

algebra of ideals oo // geometry of varieties

algebra of R = k[x1, . . . , xd]
oo // geometry of kd

radical ideals oo // varieties

prime ideals oo // irreducible varieties

maximal ideals oo // points

(0) oo // variety kd

k[x1, . . . , xd]
oo // variety ∅

(x1 − a1, . . . , xd − ad) oo // point {(a1, . . . , ad)}
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smaller ideals oo // larger varieties

larger ideals oo // smaller varieties

Example 2.9. Consider the curve in C3 parametrized by (t3, t4, t5), meaning

C = {(t3, t4, t5) | t ∈ C}.

This curve is a variety! It corresponds to the ideal of polynomials f(x, y, z) ∈ R = C[x, y, z]
that vanish along C, which is to say, at every point in C. We can compute I(C) explicitly
by considering the map

C[x, y, z]
ψ // C[t]

x � // t3

y � // t4

z � // t5

and noting that the polynomials that vanish along C are precisely those in the kernel of ψ.
So our curve corresponds to the prime ideal

P = kerψ =
(
x2y − z2, xz − y2, yz − x3

)
.

2.2 Back to symbolic powers with Zariski–Nagata

What does this old geometry story have to do with symbolic powers? First, it helps to think
of Nullstellensatz in yet another format.

Theorem 2.10 (Nullstellensatz again). Let I be a radical ideal in C[x1, . . . , xd]. Then

I =
⋂

(a1,...,ad)∈V(I)

(x1 − a1, . . . , xd − ad) =
⋂
m⊇I

m maximal

m.

This is just a fancier way of saying that I is the set of polynomials that vanish at every
point in V(I), though by noting that the maximal ideals containing I are precisely the
maximal ideals corresponding to points in V(I), we can avoid any mention to the variety
corresponding to I, and write a statement that is purely algebraic.

While the elements in a radical ideal I are all the polynomials that vanish on V(I), not
all those polynomials vanish along X equally ; roughly speaking, some polynomials vanish
more than others. You probably already have an intuitive idea of what this should mean:
for example, the polynomial x2 vanishes more at the point 0 than the polynomial x.

Theorem 2.11 (Zariski–Nagata). Let I be a radical ideal in C[x1, . . . , xd]. Then

I(n) =
⋂
m⊇I

m maximal

mn.

Think of this theorem as a higher order version of Nullstellensatz in its 2.10 format.
Zariski–Nagata tells us that the polynomials in I(n) are those that vanish to order n along
the variety that I defines.
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Example 2.12. Let’s get back to the curve in example Example 2.9, parametrized by
(t3, t4, t5) and corresponding to the ideal

P =

x2y − z2︸ ︷︷ ︸
f

, xz − y2︸ ︷︷ ︸
g

, yz − x3︸ ︷︷ ︸
h


in R = C[x, y, z]. We will see that P (2) 6= P 2, meaning that there are polynomials that
vanish to order 2 along C that are not in P 2.

First, consider a non-standard grading on R under which the map ψ in Example 2.9 is
a degree 0 map, and I is a homogeneous ideal: give x degree 3, y degree 4, and z degree 5.
With this grading, deg(f) = 10, deg(g) = 8 and deg(h) = 9, and the polynomial fg − h2 is
homogeneous of degree 18. Note that fg − h2 = xq, for some q of degree 18− 3 = 15. Since
x /∈ P and fg − h2 ∈ P 2, we have q ∈ P (2). However, since all elements in P have degree at
least 8, then all elements in P 2 must have degree at least 16, so that q /∈ P 2. We conclude
that P 2 6= P (2).

This phenomenon that the symbolic powers of a radical ideal can be different from the
powers is ubiquitous: in general, we should expect to find polynomials vanishing to order
n on a variety X that are not in I(X)n. On the other hand, we do always have In ⊆ I(n).
Another common phenomenon is that we can find elements vanishing to order n along X
that live in interesting degrees — degrees that we would not find in I(X)n.

Example 2.13. Let’s get back to the union of the three coordinate lines in Example 2.8,
which corrresponds to the radical ideal

I = (xy, xz, yz) = (x, y) ∩ (x, z) ∩ (y, z).

To compute its symbolic powers, we compute the symbolic powers of each of its minimal
primes. These turn out to be quite simple: since (x, y), (x, z), and (y, z) are each generated
by some subset of the variables, their symbolic and ordinary powers actually coincide, as we
will later discuss. Therefore,

I(2) = (x, y)2 ∩ (x, z)2 ∩ (y, z)2.

Now note that I(2) contains the element xyz, of degree 3, but

I2 = (x2, y2, z2, xy, xz, yz)

is generated by elements of degree 4, so xyz /∈ I2. So once again, we found an ideal with
I2 ⊆ I(2). In fact, one can show that 3 is the smallest degree of a polynomial vanishing to
order 2 along the three coordinate lines.
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3 Day 3: Open Problems

There are many innocent sounding questions about symbolic powers that turn out to be
very difficult, and that are essentially wide open. We are going to discuss some of these
questions, starting from sometimes untreatable, unreasonable questions, and distilling them
into proper research questions that have sparked lots of active research.

The main obstruction to solving problems on symbolic powers is that actually computing
examples can be extremely difficult — for starters, because finding a primary decomposition
for a given ideal is a hard computational problem.

3.1 The (in)equality of symbolic and ordinary powers

While computing symbolic powers is difficult in general, computing powers is in contrast
quite simple. So when is I(n) = In? There are different ways we can make this question
precise, starting with asking for sufficient conditions on I that guarantee equality of all
symbolic and ordinary powers of I. The most elementary result on equality of symbolic and
ordinary powers of ideals is about complete intersections.

Definition 3.1. Let R be a ring and M be an R-module. An element r ∈ R is regular
(or a nonzerodivisor) on an R-module M if rm = 0 for some m ∈ M implies m = 0. More
generally, a sequence of elements x1, . . . , xn is a regular sequence on M if

• (x1, . . . , xn)M 6= M , and

• for each i, xi is regular on M/(x1, . . . , xi−1)M .

In particular, elements x1, . . . , xn form a regular sequence on R if

• (x1, . . . , xn) 6= R, and

• for each i, xi is regular on R/(x1, . . . , xi−1)M .

If an ideal I is generated by a regular sequence, we say that I is a complete intersection.

Remark 3.2. Every element in the ideal (x1, . . . , xi) sends xi+1 inside (x1, . . . , xi). Saying
that xi+1 is regular on R/(x1, . . . , xi) is equivalent to saying that there are no other elements
sending xi+1 inside (x1, . . . , xi) but the trivial ones.

The example to keep in mind is an ideal generated by variables in a polynomial ring.

Example 3.3.

a) The variables x1, . . . , xn form a regular sequence on the polynomial ring R = k[x1, . . . , xn]
in n variables over a field k. In fact, any ideal in R generated by a subset of the variables
is a complete intersection.

b) Let k be a field and R = k[x, y, z]. The sequence xy, xz is not regular on R, since xz kills
y in R/(xy).
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We can describe complete intersections from a more geometric perspective. Given a
radical ideal I in C[x1, . . . , xd], consider the codimension c of the corresponding variety
V(I), that is,

c = d− dimension of V(I).

It turns out this number matches another algebraic invariant you may have heard of — the
height of I, which is defined in terms of lengths of chains of prime ideals. We can compare
c to the number of generators we need to define I. If I is generated by n elements, then
there is a theorem that says that c 6 n. Equality happens precisely when I is a complete
intersection.

Theorem 3.4. If I is a complete intersection in a Cohen-Macaulay ring, then I(n) = In for
all n > 1.

The fine print is not important here: our favorite rings, the polynomial rings over fields,
are all Cohen-Macaulay.

Example 3.5. In our favorite example I = (xy, xz, yz), the variety V(I) is the union of 3
lines, so it has dimension 1:

Therefore, the codimension of I is 3− 1 = 2. If you know a bit about dimension theory, you
will quickly recognize that indeed the ideal I has height 2. On the other hand, I cannot be
generated by less than the 3 generators we presented, so I is not a complete intersection.
And indeed, we saw back in Example 2.13 that I(2) 6= I2.

Nevertheless, Theorem 3.4 is very far from an if and only if.

Example 3.6. The prime P defining the Veronese ring k[s2, st, t2], that is, the kernel of the
map

k[a, b, c, d] // k[s3, s2t, st2, t3]

a � // s3

b � // s2t

c � // st2

d � // t3

is not a complete intersection: it has codimension 4 − 2 = 2, but it is minimally generated
by 3 elements,

P = (ad− bc, c2 − bd, b2 − ac).

Nevertheless, P (n) = P n for all n, a fact which can be found in [HH92, Example 4.4], and
that also follows as a special case of [Sch91] and [GH19, Corollary 4.3].
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In general, the question of when the symbolic and ordinary powers of a given ideal coincide
is very difficult. Hochster [Hoc73] gave conditions on I that are equivalent to I(n) = In for
all n > 1 when I is prime, and those conditions were extended by Li and Swanson [LS06] to
the case when I is a radical ideal. However, even thought these equivalent conditions hold
over any noetherian ring, they are not easy to check in practice, nor to describe here.

Problem 1. Let R = k[x1, . . . , xd]. Can we completely describe the class of radical ideals I
that satisfy I(n) = In for all n > 1? Is there an invariant d depending on the ring d or the
ideal I such that I(n) = In for all n 6 d (or for n = d) implies that I(n) = In for all n > 1?

There are some settings under which this is understood. The following is [Hun86, Corol-
lary 2.5], which involves some technical terms that may be unfamiliar:

Theorem 3.7 (Huneke, 1986). Let R be a regular local ring of dimension 3, and P a prime
ideal in R of height 2. The following are equivalent:

(a) P (n) = P n for all n > 1;

(b) P (n) = P n for some n > 2;

(c) P is generated by a regular sequence.

As a corollary, if P is a homogeneous prime ideal in k[x, y, z] of codimension 2, we have
P (n) = P n for all n exactly when P is a complete intersection, and P (n) 6= P n for all
n > 2 whenever P has at least 3 generators. In dimension higher than 3, we can find prime
ideals that are not generated by regular sequences but whose symbolic and ordinary coincide
nevertheless, such as Example 3.6.

There are some situations where we can guarantee I(n) = In always holds for small values
of n, even if it fails for large n.

Theorem 3.8 (see Theorem 2.3 in [CFG+16], see also [Mor99, HU89]). Let R = k[x0, . . . , xn]
be a polynomial ring over a field k. Let I be a height 2 ideal in R such that R/I is Cohen-
Macaulay and such that IP is generated by a regular sequence for all primes P 6= (x0, . . . , xn)
containing I. Then I(k) = Ik for all k < n regardless of the minimal number of generators
of I. Moreover, the following statements are equivalent:

(a) I(k) = Ik for all k > 1;

(b) I(n) = In;

(c) I is generated by at most n elements.

Remark 3.9. Notice that if P is a height 2 prime ideal in a polynomial ring in 3 variables,
meaning that n = 2 in the statement of Theorem 3.8, then the conclusions of Theorems 3.7
and 3.8 coincide, although Theorem 3.7 also adds the equivalence with condition

(d) I(k) = Ik for some k > 2;

This suggests that Theorem 3.8 might hold if we add condition (d) to the equivalences stated.
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Often in commutative algebra, when one studies monomial ideals — ideals generated by
monomials, such as our old friend (xy, xz, yz) — things tend to get a bit more treatable, since
we can often apply combinatorial techniques. Things get even better when I is generated by
monomials given by products of distinct variables, in which case we say I is a squarefree
monomial ideal. However, there is still no characterization of the squarefree monomial
ideals that satisfy I(n) = In for all n > 1. It is conjectured that this condition is equivalent
to I being packed.

Definition 3.10 (König ideal). Let I be a squarefree monomial ideal of height c in a poly-
nomial ring over a field. We say that I könig if I contains a regular sequence of monomials
of length c.

Despite the fact that all squarefree monomial ideals do contain a regular sequence of
length equal to their height, not all squarefree monomial ideals are könig.

Exercise 18. Show that (xy, xz, yz) is not könig.

Definition 3.11 (Packed ideal). A squarefree monomial ideal of height c is said to be
packed if every ideal obtained from I by setting any number of variables equal to 0 or 1 is
könig.

Exercise 19. Give an example of an ideal that is packed and of one that is not packed.

The following is a restatement by Gitler, Valencia, and Villarreal in the setting of symbolic
powers of a conjecture of Conforti and Cornuéjols about max-cut min-flow properties.

Conjecture 3.12 (Packing Problem). Let I be a squarefree monomial ideal in a polynomial
ring over a field k. The symbolic and ordinary powers of I coincide if and only if I is packed.

The Packing Problem has been solved for the case when I is the edge ideal of a graph
[GVV07].

Definition 3.13 (Edge ideal). Let G be a simple graph on n vertices {v1, . . . , vn}. Given a
field k, the edge ideal of G in k[x1, . . . , xn] is the ideal

I =
(
xixj

∣∣ if there is an edge between the vertices vi and vj
)
.

Theorem 3.14 (Gitler–Valencia–Villareal, [GVV07]). Let I be the edge ideal of a graph G.
The following are equivalent:

(a) G is a bipartite graph;

(b) I(n) = In for all n > 1;

(c) I is packed.

While the more general version of the Packing Problem is still open, the question of
whether it is sufficient to test I(n) = In only for finitely many values of n is settled for
monomial ideals.

Theorem 3.15 (Núñez Betancourt – Montaño [MnNnB19]). Let I be a squarefree monomial
ideal generated by µ elements. If I(n) = In for all n 6 µ

2
, then I(n) = In for all n > 1.
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3.2 What is the degree of an element in I(n)?

When I is a homogeneous ideal in a graded ring, the symbolic powers of I are also homo-
geneous ideals. We have used this idea informally before a few times, when we showed that
certain elements could not possibly be in a given symbolic power because of degree reasons.
Both in Example 2.12 and Example 2.13, we found elements in a symbolic power that lived
in an unexpectedly small degree. It is then natural to ask what is the minimal degree of an
element in I(n) for each n.

The situation in C[x1, . . . , xd] is already interesting enough. When we talk about homo-
geneous ideals in C[x1, . . . , xd], we often think of a slightly different geometric perspective
than the one we described before. Rather than thinking of the affine space Cd, we consider
the projective space PdC, which we may abbreviate to Pd, which we obtain from Cd+1 \ {0}
by identifying all points in the same line through the origin. More precisely, we identify the
point (a0, . . . , ad) ∈ Cd+1 \ {0} with any point of the form (λa0, . . . , λad) for some λ 6= 0,
and represent the equivalence class of (a0, . . . , ad) by [a0 : · · · : ad].

There is also a notion of projective varieties, which now require us to consider homoge-
neous polynomials in C[x1, . . . , xd]. A projective variety is any set of points in Pd that con-
tains precisely the solutions to some system of homogeneous polynomials in C[x1, . . . , xd].
A polynomial f is homogeneous if it can be written as a sum of monomials all in the same
degree n, or equivalently, that satisfy

f(λx1, . . . , λxd) = λnf(x1, . . . , xd)

for any λ. An ideal generated by homogeneous polynomials is called a homogeneous ideal.
There is a bijection

{subvarieties of Pd}

{(a0, . . . , ad)}

←→

←→

{
homogenous radical ideals

I 6= (x0, . . . , xd) in C[x0, . . . , xd]

}
.

(aixj − ajxi | 0 6 i, j 6 d)

A lot of the rules we saw in the affine case also apply here; for example, a finite set of
points will correspond to the intersection of the corresponding ideals.

Definition 3.16. Given a homogeneous ideal I in k[x1, . . . , xd], α(I) denotes the minimal
degree of a homogeneous element in I.

We are interested in the values of α(I(n)), how α(I(n)) grows with n, and how small it can
be. If I corresponds to a finite set of points in PN , α(I) is the smallest degree of a polynomial
vanishing on each of our points, or equivalently, the smallest degree of a hypersurface passing
through each of the given points, while α(I(n)) is the smallest degree of a hypersurface passing
through each of the given points with multiplicity n.

Conjecture 3.17 (Nagata [Nag65]). If I defines n > 10 general points in P2
C,

α(I(m)) > m
√
n.

This question remains open except for some special cases.
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Conjecture 3.18 (Chudnovsky, [Chu81]). Let X be a finite set of points in PN , and I =
I(X) be the corresponding radical ideal in k[x0, . . . , xN ]. Then

α(I(m))

m
>
α(I) +N − 1

N
.

Turns out that the limit of the left hand side exists and equals the infimum on the same
set. More precisely,

α̂(I) = lim
m→∞

α(I(m))

m
= inf

m

α(I(m))

m
.

We can restate Chudnovsky’s conjecture in terms of this constant α̂, known as the Wald-
schmidt constant of I. More precisely, Chudnovsky’s conjecture asks if

α̂(I) >
α(I) +N − 1

N
.

This conjecture has been shown for finite sets of very general points in PNk as long as k is an
algebraically closed field [FMX18, Theorem 2.8], and also for sufficiently large sets of general
points. These conditions refer to the fact that the conjecture holds over some reasonably
large set. For each fixed s, there is a space called the Hilbert scheme that parametrizes all
the sets of s many points in Pd, with a certain topology; a statement holds for a general
set of s points if there exists an open dense set in the Hilbert scheme of s points for which
the statement holds.

Theorem 3.19 (Bisui–Grifo–Hà–Nguy˜̂en, [BGHN20a]). Chudnovsky’s Conjecture holds for
a general set of s > 4N points in PN .

In fact, the theorem holds over any algebraically closed field of any characteristic. Chud-
novsky’s bound remains open for the case of an arbitrary set of finitely many points. One
might wonder if we can extend this to any homogeneous ideal, perhaps by substituting N by
a more appropriate invariant.1 Such a result has been shown to hold for squarefree monomial
ideals [BCG+16, Theorem 5.3] and other classes of ideals with nice properties [BGHN20b].
Chudnovsky’s Conjecture is a special case of a more general conjecture by Demailly [Dem82].

3.3 The Eisenbud–Mazur Conjecture

While I(2) ⊆ I always holds, we may wonder whether I(2) may contain a minimal generator
of I.

Conjecture 3.20 (Eisenbud–Mazur [EM97]). Let (R,m) be a localization of a polynomial
ring over a field k of characteristic 0. If I is a radical ideal in R, then I(2) ⊆ mI.

This fails in prime characteristic:

1The most appropriate invariant is likely to be something called the big height.
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Example 3.21 (Eisenbud–Mazur [EM97]). Let p be a prime integer, and let I be the kernel
of the map

Fp[x1, x2, x3, x4] // Fp[t]
x1

� // tp
2

x2
� // tp(p+1)

x3
� // tp

2+p+1

x4
� // t(p+1)2 .

Consider the polynomial f = xp+1
1 x2 − xp+1

2 − x1x
p
3 + xp4 ∈ I. Note that f is a quasi-

homogeneous polynomial, and in fact f ∈ I(2). To see that, consider

g1 = xp+1
1 − xp2 ∈ I,

g2 = x1x4 − x2x3 ∈ I,
g3 = xp1x2 − x

p
3 ∈ I,

and note that
xp1f = g1g3 + gp2 ∈ I2.

We also claim that f is in fact a minimal generator of I, meaning f /∈ (x1, x2, x3, x4)I. To
do this, one can show that no element of I contains a term of the form xa4 for any 1 6 a < p,
and since I is generated by binomials, it suffices to show there is no element of the form
xa4 − xb3xc2xd1 in I. We leave this as an exercise.

The Eisenbud–Mazur Conjecture also fails if the ring is not regular. It is still open in
most cases over fields of characteristic 0.

Exercise 20. Show the Eisenbud–Mazur conjecture for squarefree monomial ideals.

More generally, Eisenbud and Mazur showed that if I in a monomial ideal and P is a
monomial prime containing I, then I(d) ⊆ PI(d−1) for all d > 1 [EM97, Proposition 7].
They also show Conjecture 3.20 for licci ideals [EM97, Theorem 8] and quasi-homogeneous
unmixed ideals in equicharacteristic 0 [EM97, Theorem 9]. For more on the status of this
conjecture, see [DDSG+18, Section 2.3].

3.4 Symbolic Rees algebras

The symbolic powers of an ideal I form a graded family, meaning that I(a)I(b) ⊆ I(a+b) for all
a and b. This simple property allows us to package them together in a single graded object,
called the symbolic Rees algebra (or symbolic blowup) of I.

Definition 3.22 (Symbolic Rees algebra). Let R be a ring and I an ideal in R. The
symbolic Rees algebra of I is the graded algebra

Rs(I) :=
⊕
n>0

I(n)tn ⊆ R[t],

where the indeterminate t is used to keep track of the grading.
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This mimics the construction of the usual Rees algebra of I. But unlike the Rees algebra,
the symbolic Rees algebra may fail to be a noetherian ring.

Exercise 21. Show that the symbolic Rees algebra of an ideal I in a ring R is a finitely
generated R-algebra if and only if it is a noetherian ring.

The symbolic Rees algebra of I is noetherian, or equivalently finitely generated, if the
symbolic powers of I can all be written in terms of a fixed finite set of symbolic powers.
More precisely, Rs(I) if and only if there exists d such that every symbolic power of I can
be written in terms of I, I(2), . . . , I(d), meaning that

I(n) =
∑

a1+2a2···+dad=n

Ia1
(
I(2)
)
· · ·
(
I(d)
)

for all n > 1. Note that the product on the right is always contained in I(n), so we can
think of the elements on the right side as expected elements of I(n). If the symbolic Rees
algebra of I is not finitely generated, that means we will see completely unexpected elements
in arbitrarily high symbolic powers of I.

Exercise 22. If the symbolic Rees algebra of an ideal I in a ring R is finitely generated,
show that there exists k such that I(kn) =

(
I(k)
)n

for all n > 1. The converse also holds as
long as R is excellent.

Which ideals do have a noetherian symbolic Rees algebra? For example, the symbolic
Rees algebra of a monomial ideal is noetherian [Lyu88, Proposition 1]. What is maybe
more surprising is that symbolic Rees algebras are often not finitely generated. The first
example of this is due to Rees [Ree58], and Roberts showed this can happen even when R
is a regular ring [Rob85], building on Nagata’s counterexample to Hilbert’s 14th Problem
[Nag65]. Roberts’ example gave a negative answer to the following question of Cowsik:

Question 3.23 (Cowsik). Let P be a prime ideal in a regular ring R. Is the symbolic Rees
algebra of P always a noetherian ring, or equivalently, a finitely generated R-algebra?

Cowsik’s motivation was a result of his [Cow84] showing that a positive answer would
imply that all such primes are set-theoretic complete intersections, that is, complete in-
tersections up to radical. Eliahou, Huckaba, Huneke, Vasconcelos and others proved var-
ious criteria that imply noetherianity. Space monomial curves (ta, tb, tc), however, were
known to be set-theoretic complete intersections [Bre79, Her80, Val81], and much work was
devoted to studying their symbolic Rees algebras. Surprisingly, the answer to Cowsik’s
question is negative even for this class of primes, with the first non-noetherian exam-
ple found in [GNW94]. In [Cut91], Cutkosky gives criteria for the symbolic Rees alge-
bra of a space monomial curve to be noetherian, and in particular shows that the sym-
bolic Rees algebra of k[ta, tb, tc] is noetherian when (a + b + c)2 > abc. There is a vast
body of literature on the case of ideals defining space monomial curves (ta, tb, tc) alone
[Cut91, Mor91, GNS91b, GM92, GNW94, GNS91a, HU90, Sri91].
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3.5 The Containment Problem

If In 6= I(n), how different are they? Can we compare them in some reasonable way?

Problem 2 (Containment Problem). Let R be a noetherian ring and I be an ideal in R.
When is I(a) ⊆ Ib?

This packages together a few different questions. First, it contains the equality problem,
since the b-th symbolic and ordinary powers coincide if and only if I(b) ⊆ Ib. When the
answer is no, the containment problem is a way to measure how far the symbolic and ordinary
powers are from each other. If we do have a particular answer to the containment problem,
say I(a) ⊆ Ib, and our ideal I is homogeneous, we automatically gain lower bounds for the
degrees of the elements in I(a). Indeed, the containment I(a) ⊆ Ib implies

α
(
I(a)
)
> α

(
Ib
)

= bα(I).

In general, the Containment Problem can be quite difficult, although we can answer it
completely if we have an explicit description of both the symbolic and ordinary powers of
our ideal. Having an explicit description of symbolic powers, however, is fairly rare.

But does Question 2 always make sense? That is, given b, must there exist an a such
that I(a) ⊆ Ib? If so, then the two graded families of ideals {In} and

{
I(n)
}

are cofinal, and
thus induce equivalent topologies. In 1985, Schenzel [Sch85] gave a characterization of when
{In} and

{
I(n)
}

are cofinal. In particular, if I is a radical ideal in R = k[x1, . . . , xd], then

{In} and
{
I(n)
}

are indeed cofinal. Schenzel’s characterization did not, however, provide
information on the relationship between a and b.

It was not until the late 90s that Irena Swanson showed that the I-adic and I-symbolic
topologies are equivalent if and only if they are linearly equivalent.2

Theorem 3.24 (Swanson, 2000, [Swa00]). Let R be a noetherian ring, and I and J two
ideals in R. The following are equivalent:

(i) {In : J∞} is cofinal with {In}.

(ii) There exists an integer c such that (Icn : J∞) ⊆ In for all n > 1.

In particular, given a radical ideal in a regular ring — for example, over k[x1, . . . , xd] —
there exists an integer c such that I(cn) ⊆ In for all n > 1. More surprisingly, over a regular
ring this constant can be taken uniformly, meaning depending only on R.

Definition 3.25 (Big height). Let I be an ideal with no embedded primes. The big height3

of I is the maximal height of an associated prime of I. If the big height of I coincides with
the height of I, meaning that all associated primes of I have the same height, we say that I
has pure height.

So the big height of a radical ideal in C[x1, . . . , xd] is the largest codimension of an
irreducible component of the corresponding variety.

2Word of caution: the words linearly equivalent have been used in the past to refer to other condition.
For example, Schenzel used this term to refer to I(n+k) ⊆ In for all n > 1 and some constant k.

3According to google, 6’2”.
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Theorem 3.26 (Ein–Lazarsfeld–Smith, Hochster–Huneke, Ma–Schwede [ELS01, HH02, MS18a]).
Let R be a excellent regular ring and I a radical ideal in R. If h is the big height of I, then

I(hn) ⊆ In

for all n > 1.

This theorem applies, for example, to polynomial rings over in finitely many variables
over a field, Z, or the p-adics.

Remark 3.27. The conclusion of Theorem 3.26 is equivalent to I(n) ⊆ Ib
n
hc for all n > 1.

We cannot replace big height by height in Theorem 3.26.

Example 3.28. Consider the ideal

I = (x, y) ∩ (y, z) ∩ (x, z) ∩ (a) = (xya, xza, yza) ⊆ k[x, y, z, a],

which has height 1 and big height 2. If we replaced big height by height in Theorem 3.26, we
would have I(n) = In for all n > 1. However, similarly to Example 2.13, I(2) 6= I2. Indeed,
note that

xyza2 ∈ I(2) = (x, y)2 ∩ (y, z)2 ∩ (x, z)2 ∩ (a)2,

whereas all elements in I2 must have degree at least 6.

Exercise 23. Given integers c < h, construct an ideal I with height c and big height h in
a polynomial ring such that I(cn) * In for some n

Ein, Lazarsfeld, and Smith first proved Theorem 3.26 in the equicharacteristic 0 geomet-
ric case, using multiplier ideals, a tool from algebraic geometry. Hochster and Huneke then
used reduction to characteristic p and tight closure techniques to prove the result in the
equicharacteristic case, where our ring contains a field. Recently, Ma and Schwede built on
ideas used in the recent proof of the Direct Summand Conjecture to define a mixed charac-
teristic analogue of multiplier/test ideals, allowing them to deduce the mixed characteristic
version of Theorem 3.26.

Given an ideal I and t > 0, the multiplier ideal J (R, I t) measures the singularities of
V (I) ⊆ Spec(R), scaled by t in a certain sense; we refer to [ELS01, MS18a] for the definition.
The proof of Theorem 3.26 in the characteristic 0 case relies on a few key properties of
multiplier ideals:

• I ⊆ J (R, I);

• For all n > 1, J
(
R,
(
P (nh)

) 1
n

)
⊆ P whenever P is a prime of height h;

• For all integers n > 1, J (R, I tn) ⊆ J (R, I t)
n
.

Then, given a prime ideal P of height h,

P (hn) ⊆ J
(
R,
(
P (nh)

))
⊆ J

(
R,
(
P (nh)

) 1
n

)n
⊆ P n.

In characteristic p, a similar proof works, replacing multiplier ideals by test ideals.
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Remark 3.29. As a corollary of Theorem 3.26, we obtain a uniform constant c as in Theorem
3.24. Indeed, the big height of any ideal in k[x1, . . . , xd] is at most d, so that I(dn) ⊆ In

for all n. This constant can actually be improved to d− 1, since the ordinary and symbolic
powers of any maximal ideal coincide. This holds more generally over any regular ring of
dimension d.

When we move away from polynomial rings to the non-regular setting, we do know that
the two topologies are equivalent for all prime ideals in some interesting cases. However, the
question of whether the constant h can be taken independently of the prime ideal considered
is still open. Since this asks for a uniform comparison between the symbolic and adic
topologies, rings with this property are said to satisfy the Uniform Symbolic Topologies
Property.

Problem 3 (Uniform Symbolic Topologies). Let R be a complete local domain. Is there a
uniform constant h depending only on R such that

P (hn) ⊆ P n

for all primes P and all n > 1?

The answer is known to be yes in some special settings [HKV09, HKV15]. Finding
effective bounds for what h might be can be even harder [Wal16, Wal18].

Example 3.30 (Carvajal-Rojas — Smolkin, 2020 [CRS20]). Let k be a field of characteristic
p and consider R = k[a, b, c, d]/(ad − bc). Then for all primes P in R, P (2n) ⊆ P n for all
n > 1.

Back in the case of polynomial rings, though, Theorem 3.26 is not the end of the story.
If we want to solve the Containment Problem from a best possible perspective, we would
want to find, for each a, the smallest b such that I(b) ⊆ Ia.

Example 3.31. The ideal I = (x, y)∩ (x, z)∩ (y, z) from Example 2.13 has big height 2, so
that Theorem 3.26 implies that I(2n) ⊆ In for all n > 1. However, one can easily check that
I(3) ⊆ I2, even though the theorem only guarantees I(4) ⊆ I2.

Question 3.32 (Huneke, 2000). Let P be a prime ideal of height 2 in a regular local ring
containing a field. Does the containment P (3) ⊆ P 2 always hold?

This question remains open even in dimension 3. Harbourne proposed the following
generalization of Question 3.32, which can be found in [HH13, BRH+09]:

Conjecture 3.33 (Harbourne, 2006). Let I be a radical homogeneous ideal in k[x0, . . . , xd],
and let h be the big height of I. Then for all n > 1,

I(hn−h+1) ⊆ In.

Remark 3.34. Equivalently, Harbourne’s Conjecture asks if I(n) ⊆ Id
n
h
e for all n > 1.

Remark 3.35. When h = 2, the conjecture asks that I(2n−1) ⊆ In, and in particular that
I(3) ⊆ I2.
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There are many good reasons why Harbourne’s Conjecture is reasonable. One of those
reasons appears back in the work of Hochster and Huneke proving Theorem 3.26. With the
appropriate tools, the characteristic p case of Theorem 3.26 for n = pe turns out to be a
beautiful application of the Pigeonhole Principle, where we can even replace the power Iq of
I by the qth Frobenius power of I, the ideal

I [q] := {f q | f ∈ I}.

Lemma 3.36 (Hochster–Huneke [HH02]). Suppose that I is a radical ideal of big height h
in a regular ring R containing a field of prime characteristic p. For all q = pe,

I(hq) ⊆ I [q].

In fact, the same proof they give in their paper but using the full power of the Pidgenhole
Principle can be used to show Harbourne’s Conjecture 3.33 for powers of p, a fact first noted
by Craig Huneke: that

I(hq−h+1) ⊆ I [q]

for all q = pe. As an easy corollary, we obtain an affirmative answer to Huneke’s Question
3.32 in characteristic 2, that is, I(3) ⊆ I2 always holds in characteristic 2.

Exercise 24. Suppose that I = (f1, . . . , fh) is a radical ideal in k[x1, . . . , xd], where k is a
field of prime characteristic p. Show that for all q = pe,

I(hq−h+1) ⊆ I [q] ⊆ Iq.

Exercise 25. Let I be a squarefree monomial ideal over a field of any characteristic. Show
that I satisfies Harbourne’s Conjecture.

Hint: given a monomial ideal, we can take its bracket power, which is a sort of fake
Frobenius power. The n-th bracket power of the monomial ideal I is the ideal

I [n] =
(
fn
∣∣ f ∈ I is a monomial

)
.

As the notation suggests, these behave a lot like the Frobenius powers.

However, despite all this evidence, Conjecture 3.33 turns out to be too general; it does
not hold for all homogeneous radical ideals.

Example 3.37 (Fermat configurations of points). Let n > 3 be an integer and consider a
field k of characteristic not 2 such that k contains n distinct roots of unity. Let R = k[x, y, z],
and consider the ideal

I = (x(yn − zn), y(zn − xn), z(xn − yn)) .

When n = 3, this corresponds to a configuration of 12 points in P2, as described in Figure 1.
Over P2(C), these 12 points are given by the 3 coordinate points plus the 9 points defined
by the intersections of y3 − z3, z3 − x3 and x3 − y3.

The ideal I is radical and has pure height 2. However, I(3) * I2, since the element
f = (yn − zn)(zn − xn)(xn − yn) ∈ I(3) but not in I2. This can be shown via geometric
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Figure 1: Fermat configuration of points when n = 3.

arguments, noting that f defines 9 lines, some three of which go through each of the 12
points.

This was first proved by Dumnicki, Szemberg e Tutaj-Gasińska [DSTG13] over k = C,
and then generalized in [HS15, Proposition 3.1] to any k and any n. Other extensions of this
example can be found in [Dra17, MS18b].

Other configurations of points in P2 have been shown to produce ideals that fail the
containment I(3) ⊆ I2, such as the Klein and Wiman configurations of points [Sec15], among
others [DS21]. Drabkin and Seceleanu showed that symmetry plays an important role in
these counterexamples, which in some way have too much symmetry. Given a configura-
tion of points in Pk that produces an ideal I with I(hn−h+1) * In, one can produce other
counterexamples to the same type of containment by applying flat morphisms Pk → Pk
[Ake17].

Example 3.38. Harbourne and Seceleanu [HS15] showed that I(hn−h+1) ⊆ In can fail for
arbitrarily high values of n in characteristic p > 0. However, their counterexamples are
constructed depending on n, meaning that given n, there exists an ideal In of pure height 2
(corresponding, once more, to a configuration of points in P2) which fails I

(hn−h+1)
n ⊆ Inn .

Nevertheless, Harbourne’s Conjecture 3.33 is satisfied by many interesting classes of
ideals:

• if I is a monomial ideal (which first appeared in [BRH+09, Example 8.4.5]);

• if I corresponds to a generic set of points in P2 ([BH10]) or P3 ([Dum15]);

• if I corresponds to a star configuration of points ([HH13]),

among others. The conjecture also holds if R/I has nice enough singularities. More precisely,
it holds if R/I is F -pure in prime characteristic p — some measure of niceness — or of
dense F -pure type over a field of characteristic 0 [GH19]. This class includes all squarefree
monomial ideals, and also ideals defining Veronese rings, generic determinantal rings, and
more generally nice rings of invariants.

Every counterexample to Conjecture 3.33 known to date actually satisfies the following
open conjecture:
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Conjecture 3.39 (Stable Harbourne [Gri20]). If I is a radical ideal of big height h in a
regular ring, then I(hn−h+1) ⊆ In for all n� 0.

We are asking if Harbourne’s Conjecure holds for n large — where large enough should
depend on I, as Harbourne and Seceleanu’s examples suggest [HS15]. There are no coun-
terexamples known to this conjecture, and the evidence supporting the conjecture keeps
growing [Gri20, BGHN20a, GHM20a, GHM20b].
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Núñez Betancourt. Symbolic powers of ideals. In Singularities and foliations.
geometry, topology and applications, volume 222 of Springer Proc. Math. Stat.,
pages 387–432. Springer, Cham, 2018.

[Dem82] Jean-Pierre Demailly. Formules de jensen en plusieurs variables et applications
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[Gri20] Elóısa Grifo. A stable version of Harbourne’s Conjecture and the containment
problem for space monomial curves. J. Pure Appl. Algebra, 224(12):106435,
2020.
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