Symbolic powers
Algebra (30y 1)
Heaven (Fundamental Heaven of Arithmotic)
Every positive integer in can be multiple as a poduct

$$n = p_1^{n} \dots p_n^{n_n}$$

Of pumes p_n (with $a_n \ge 1$) which is unique up to the order of the factors
Hav about in other rungs?
For us, rungs are always commutative with 1.
Example $R = \mathbb{Z}[1-5] \cong \mathbb{Z}[R]/(x^2+5)$
 $6 = 2 \cdot 3 = (1+\sqrt{5})(1-\sqrt{5})$
These are distinct products in includibles.
Hot's wrong?
We are focusions on elements when we should be focusing on ideals!
 \mathbb{P}_{1}^{1} An ideal I is pume of $Ny \in I \implies n \in I$ or $y \in I$
 \mathbb{P}_{1}^{1} An ideal I is pume of $Ny \in I \implies n \in I$ or $y \in I$
 \mathbb{P}_{1}^{1} An ideal I is pume of $Ny \in I \implies n \in I$ or $y \in I$
 \mathbb{P}_{1}^{1} An ideal I is pume of $Ny \in I \implies n \in I$ or $y \in I$
 \mathbb{P}_{1}^{1} An ideal I is pume of $Ny \in I \implies n \in I$ or $y \in I$
 \mathbb{P}_{1}^{1} An ideal I is pume of $Ny \in I \implies n \in I$ or $y \in I$
 \mathbb{P}_{1}^{1} An ideal I is pume of $Ny \in I \implies n \in I$ or $y \in I$
 \mathbb{P}_{1}^{1} An ideal I is pume of $Ny \in I \implies n \in I$ or $y \in I$
 \mathbb{P}_{2}^{1} An ideal I is pume of $Ny \in I \implies n \in I$ or $y \in I$
 \mathbb{P}_{2}^{1} An ideal I is pume of $Ny \in I \implies n \in I$ or $M \in I$
 \mathbb{P}_{2}^{1} An ideal I is pume of $Ny \in I \implies n \in I$ or $N \in I$
 \mathbb{P}_{2}^{1} An ideal I is pume of $Ny \in I \implies n \in I$ or $N \in I$
 \mathbb{P}_{2}^{1} An ideal I is pume of $N \in I$ for some n

Exercises

(1)
$$Q_1, Q_2$$
 \mathbb{P} -pumary $\Rightarrow Q_1 \cap Q_2$ \mathbb{P} -pumary
(2) VI moximal \Rightarrow I pumary

-theorem (darker, 1905, Noether, 1921)
Every ideal in a Noetherman rung has a pumary decomposition
*Noetherman rungs = Commutative algebraists favoute rungs
R is Noetherman if every ideal in R is finitely generated
(by example:
$$R = K \sum_{i=1}^{n} \frac{x_i}{i} / \frac{1}{i} = \frac{k \int 2d_i}{k} \int \frac{1}{k} \int \frac{1}{$$

c) Rumany decompositions are not unique :

$$I = (z^2, ny) \subseteq k[n, y]$$

 $= (z) \cap (z^2, ny, y^2) = (z) \cap (z^2, ny, y^n)$

these are different pumary decompositions. But what do they have in common?

$$(x) \cap (x^{2}, y^{2}, y^{2}) = (x) \cap (x^{2}, y^{2}, y^{2})$$

$$\int xaducal$$

$$(x), (x, y) \qquad (x), (x, y)$$

Here (Uniqueness of Jumany decompositions)
R Noetherian Jung
I ideal in R

$$I = Q_1 \cap \cap Q_K$$
 issuedundant Jumany decomposition
(1) $\{\sqrt{Q_1}, \dots, \sqrt{Q_K}\}$ is unique and does not depend on
our choice of Jumany decomposition
In fact, $\{\sqrt{Q_1}, \dots, \sqrt{Q_K}\} = Ass(R/I) = associated Jumes of I
othere a prime R is associated to I if
 $I = \{f \in R \mid f a \in I\}$ for some $a \in R$$

(2) the components
$$Q_i$$
 coming from minual pumes $Q \equiv and Quen by the following formula:
 $P \in Min(I) \leq Ass(R/I) \implies the P-pumary Component Q I is$
 $IR_P \cap R := 2 f \in R \mid s f \in I, s \notin P$
 $\left(= 2 f \in R \mid \frac{s}{s} \cdot \frac{f}{1} \in IR_P \right)$
 $= 2 f \in R \mid \frac{f}{1} \in IR_P \right)$$

Most important facts about associated primes and primary decompositions:

$$\rightarrow$$
 Every (proper) ideal has associated primes
 \rightarrow Min(I) \subseteq Ass(R/I)
 \rightarrow associated primes that are not minimal are called embedded
 \rightarrow primary decompositions are computationally difficult to find

What does it readly mean to be an associated prime?
When N is an R-module (abelian group with a scalar product by elements in R)
$$ann(m) := 2 \text{ rer } \text{ rm} = 0 \text{ } annihilator of m$$

$$P \in Ass(R/I) \iff P = ann(a+I)$$
 for rome $a \in R$
 \iff there exists an inclusion $R/_{P} \longrightarrow R/_{I}$

Symbolic powers
det I be an ideal in R

$$I^{n} = (f_{1} - f_{n} | f_{i} \in I)$$
 nth power of I
Example $(n, y)^{2} = (n, y)^{2}$

I prime ideal
$$\frown P^n$$
 is not necessarily primary!
Example $R = \frac{k[x,y,z]}{(xy-z^2)}$ $P = (x,z)$ (in R)
 P^n is not primary! Because
 $xy = z^2 \in P^n$, but $x \notin P^2$, $y \notin \sqrt{P^2} = P$

but
$$P^n$$
 has a pumary decomposition
what primes are going to appear?
 $Hin(P^n) = \{P\}$ since $P^n \subseteq Q \Rightarrow P \subseteq Q$

so an indundant primary decomposition of 2 tooks like

and we know $Q_P = \{f \in R \mid sf \in P' \text{ for some solve}\}$

Definition I pume ideal
the n-th symbolic power & I is given by
$$P^{(n)} := 2 f \in \mathbb{R}$$
 / $sf \in \mathbb{P}^n$ for some $s \notin \mathbb{P}$
 $= 2 - pumary Component of \mathbb{P}^n
 $= senallest P - pumary real contains P$
exercise$

Note:
$$P^n \in \mathbb{P}^{(n)}$$
 always! But in general, $\mathbb{P}^n \notin \mathbb{P}^{(n)}$
Example $R = \frac{k[a, y, z]}{(xy - z^2)}$ $\mathbb{P} = (x, z)$ (in R)

$$ny = z^{2} \in \mathbb{P}^{2}$$

$$y \notin \mathbb{P} \implies \pi \in \mathbb{P}^{(2)} \quad \text{but } x \notin \mathbb{P}^{2}(!)$$

$$p \notin \mathbb{P} \implies \pi \in \mathbb{P}^{(2)}$$

General definition
$$I = \overline{J} = P_1 \cap \cdots \cap P_k$$

 $I^{(n)} = P_1^{(n)} \cap \cdots \cap P_k^{(n)}$

Tim fait this is actually the same we would get if we took the minimal components in an indundant premary decomposition of In