| Symptotic Revers | Budges 202 |  |
|------------------|------------|--|
| Geometry (Day 2) |            |  |

Challenge what one the polynomials in 
$$\mathbb{C}[x,y,z]$$
  
that wonish at every point on the Curve  
 $C = 2(t^3, t^4, t^5) | t \in \mathbb{C}[2]$ ?  
Solution the the polynomials in the ideal

$$I = \left(\begin{array}{ccc} x^{3} - yz \\ f \end{array}\right) \begin{array}{c} y^{2} - zz \\ g \end{array}, \begin{array}{c} z^{2} - zy \\ h \end{array}\right)$$

| these | Can | be calculated        | explicitly as                                                                                                     |  |
|-------|-----|----------------------|-------------------------------------------------------------------------------------------------------------------|--|
| ker   | (   | C [n,y, ₹]<br>x<br>n | $ \xrightarrow{\longrightarrow} C[t] $ $ \xrightarrow{\longmapsto} t^{3} $ $ \xrightarrow{\longleftarrow} t^{4} $ |  |
|       | ١   | 2                    | $\longleftrightarrow t^{5}$                                                                                       |  |

→ A computer can calculate these! (try Hacaulayse) there is a concopendence between ruce rubsets of  $A_{\mu}^{d}$  (varieties) and ideals in ketry, "a] rytems of "polynomial equations



| there is a byection                       |                                         |                                   |
|-------------------------------------------|-----------------------------------------|-----------------------------------|
| 2 madral ideals 3                         | $\xrightarrow{\mathbf{I}}_{\mathbf{V}}$ | 2 varieties 3                     |
| $(x_1 - \alpha_1, \dots, x_d - \alpha_d)$ | <b>~~~</b>                              | $\bullet = \{(a_1, \dots, a_d)\}$ |
| maximal ideals                            | $\longleftrightarrow$                   | points                            |
| $\mathcal{R} = (1)$                       | <b>{</b> }                              | ø                                 |
| (0)                                       | <)                                      | Ac                                |
| bigger ideals                             | $ \longleftrightarrow $                 | smaller varieties                 |
| smaller ideals                            | $\leftarrow \rightarrow$                | lagger vareties                   |
| $\cap$                                    | <>                                      | Ū                                 |
| +                                         | <b>~~~~</b>                             | $\cap$                            |

Exercise  $V(I_1 \cap I_2) = V(I_1) \cup V(I_2) I(X_1) + I(X_2) = I(X_1 \cap X_2)$ 



$$\frac{\text{theorem}\left(\text{Helbert's Nucleitablensatz}\right)}{I = \sqrt{I} \subseteq \mathcal{R} = \mathbb{C}[\mathcal{H}_{j}, \cdots, \mathcal{H}_{d}]}$$

$$\text{then } I = \bigcap(\mathcal{H}_{1} - \mathcal{H}_{1}, \cdots, \mathcal{H}_{d} - \mathcal{H}_{d}) = \bigcap_{\substack{(\alpha_{1}, \cdots, \alpha_{d}) \in X}} \mathcal{H}_{j} = \bigcap_{\substack{m_{1}, \cdots, m_{d} \in X}} \mathcal{H}_{j}$$

Challenge Find the polynomials in 
$$\mathbb{C}[r, y, z]$$
  
that vanual to order n along  
 $C = 2(t^3, t^4, t^5) | t \in \mathbb{C}_2^3$ .

$$\frac{\text{theorem}}{I} \left( 2 \text{and} i - \text{Nagata} \right)$$

$$I = \sqrt{I} \in \mathbb{C} \left[ 2 \text{and} i - \text{Nagata} \right]$$

$$I^{(n)} = \bigwedge_{m \ge I} \mathfrak{M}^{n} = \begin{array}{c} \text{polynomials that vanish to} \\ \text{order } n \text{ at each point in } V(I) \end{array}$$

$$\frac{\text{Note}}{\text{I}} = \mathbb{P}_{1} \cap \cdots \cap \mathbb{P}_{k} \longrightarrow I^{(n)} = \mathbb{P}_{1}^{(n)} \cap \cdots \cap \mathbb{P}_{k}^{(n)}$$

$$\frac{\text{polynomials that vanish to order } n \text{ at each ineducible component}}{\mathbb{P}^{(n)} = 2 \text{fer} \left[ \text{sfe}^{n} \text{for some } s \notin \mathbb{P} \right] = \begin{array}{c} \text{vonuching to order } n \\ \frac{1}{2} \text{scalley} \text{ at } \mathbb{P} \end{array}$$

Elementary fluts about symbolic poners:  
() I = I<sup>(1)</sup>  
() I<sup>n</sup> 
$$\subseteq$$
 I<sup>(n)</sup>  
() I<sup>n</sup>  $\subseteq$  I<sup>(n)</sup>  
() I<sup>(a)</sup> I<sup>(b)</sup>  $\subseteq$  I<sup>(a+b)</sup>  
() I<sup>(a)</sup> I<sup>(b)</sup>  $\subseteq$  I<sup>(a)</sup>  
() I<sup>(a)</sup> I<sup>(a)</sup>  $\subseteq$  I<sup>(a)</sup>  
() I<sup>(a)</sup> I<sup>(a)</sup>  $\subseteq$  I<sup>(b)</sup>  
() I<sup>(a)</sup> I<sup>(a)</sup>  $\subseteq$  I<sup>(a)</sup>  
() I<sup>(a)</sup> I<sup>(a)</sup>  $\subseteq$  I<sup>(a)</sup>  
() I<sup>(a)</sup> I<sup>(a)</sup>  $\subseteq$  I<sup>(a)</sup>  
() I<sup>(a)</sup> I<sup>(a)</sup>  $\subseteq$  I<sup>(a)</sup>  $I(a)  $\subseteq$  I<sup>(a)</sup>  $I(a)  $I(a) I(a)  $I(a) I(a)  $I(a) I(a)  $I(a) I(a)  $I(a) I(a)  $I(a) I(a) I(a)  $I(a) I(a) I(a)  $I(a) I(a) I(a)  $I(a) I(a) I(a) I(a)  $I(a) I(a) I(a) I(a)  $I(a) I(a) I$$$$$$$$$$$$$ 



and actually,  

$$I^{(a)} = (x,y)^{(a)} \cap (x,z)^{(a)} \cap (y,z)^{(a)}$$

$$= (x,y)^{a} \cap (x,z)^{a} \cap (y,z)^{a}$$

$$\underset{Nyz}{\overset{W}{}}$$
but  $xyz \notin I^{a}$  because every element in  $I^{2}$  has degree  $\geq 4$ .