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Thank-you to the organizers, and for the invitation to speak!

Joint w/ Jessica Sidman (MHC) and Will Traves (USNA).
Goal: To find defining equations for matroid varieties.
Ground field: C
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Introduction & Problem

Q: Which collections of 3 columns form a basis for the column
space of A?

A =

−1 1 2 3 4
−1 1 2 0 −2
1 1 1 1 1


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Look for non-zero 3-minors of A.

Number the columns of A 1 through 5. Here are the 3-minors,
according to their column indices:

{1, 2, 3} → 0 {1, 2, 4} → −6 {1, 2, 5} → −12
{1, 3, 4} → −9 {1, 3, 5} → −18 {1, 4, 5} → −9
{2, 3, 4} → 3 {2, 3, 5} → −6 {2, 4, 5} → −11
{3, 4, 5} → 0
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The matroid MA on A is given by the set:

B = {all 3-tuples except {1, 2, 3} and {3, 4, 5}} ⊂ {1, . . . , 5}

The sets in B are called bases for the matroid MA.

Matroids are a generalization of the collections of linearly
independent columns of a matrix.
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Q: Given a matroid on a matrix A, what other matrices have
the same matroid as A?

E.g., rref A.

In fact, any other matrix that represents the same point in the
Grassmannian Grass(3, 5)!

... What else?
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Say A represents a point x ∈ Grass(r , n). Put Mx = MA.

Gel‘fand, Goresky, Macpherson, and Serganova (1987)
introduced the matroid stratification of Grass(r , n) by sets of
the form

Γx = {y ∈ Grass(r , n) |My = Mx}

and gave beautiful connections to combinatorics.

We study the Zariski closures of these strata, Vx . Vx is called
the matroid variety for the matroid Mx .
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Let X denote the generic r × n matrix and ∧rX the matrix
whose entries are the r -minors of X .

Given a matroid variety Vx , we wish to find the defining ideal,

Ix = I(Vx ) ⊆ C[Grass(r , n)]

= C[X ]
〈Plücker relations〉

= C[∧rX ].
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Mnëv (1985), Sturmfels (1989), Knutson, Lam, & Speyer
(2013): All “hell” breaks loose when we try to find Ix .

Why?
Mnëv, Sturmfels: Arbitrary singularities appear.
The Zariski topology; the matroid stratification is based
on Zarski-open conditions, the basis axioms of a matroid.
The equations are not obvious (as we shall see).
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If Ax is a matrix representative of x ∈ Grass(r , n), λ an
ordered subset of {1, . . . , n} of size r , then let [λ] denote the
r -minor of Ax with columns indexed by λ.

Define the ideal

Nx = 〈[λ] | λ is not a basis of Mx〉 ⊆ Ix .

(N for “Näıve”)
Knutson, Lam, & Speyer: Nx = Ix when Mx is a
positroid. (Is the converse true?)
Sturmfels (1993): Nx ( Ix in general.
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Paradigm shift
Matroids as point configurations

Idea: Think of the columns of a matrix A as points in Pr−1.

Q: What do you notice about the points in relation to the
matroid MA whose bases are

{all 3-tuples except {1, 2, 3} and {3, 4, 5}} ⊂ {1, . . . , 5}?
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Points 1, 2, and 3 are collinear if and only if {1, 2, 3} is not a
basis for MA. We say the bracket [123] vanishes. We also
have [345] = 0.

So if x ∈ Grass(3, 5) is the point represented by A, then we
have

Nx = 〈[123], [345]〉.

Q: Is Nx = Ix ? (Yes in this case, actually – Mx is positroid.)
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Example (Ford 2013):
Mpencil = matroid on a 3× 7 matrix with nonbases
{1, 2, 7}, {3, 4, 7}, {5, 6, 7}

Npencil = 〈[127], [347], [567]〉.
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All hell breaks loose:
Ipencil = Npencil + 〈[134][256]− [234][156]〉. How could we have
known this?!

Ans: The Grassmann-Cayley algebra.
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Tool
Grassmann-Cayley algebra

The Grassmann-Cayley algebra was invented to do synthetic
projective geometry.

We do arithmetic on the points (vectors) themselves, and
obtain expressions in the brackets.

The Grassmann-Cayley algebra is the usual exterior algebra
over the vector space Cr equipped with two operations:
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join (∨): refers to the line passing through points (in P2)

The line joining 1 and 2 is 1 ∨ 2, or 12.

When r = 3 (i.e., over P2), three points joined makes a
bracket, and three collinear points make the bracket vanish.

(The join is the usual exterior product with the wedge symbol
flipped upside down.)
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meet (∧): refers to the intersection of two lines (in P2)

The meet of the lines 1 ∨ 2 and 3 ∨ 4 is (1 ∨ 2) ∧ (3 ∨ 4), or
12 ∧ 34.

The meet operation uses shuffle products, which also
produce expressions in the brackets.
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For general r , given two extensors v = v1 · · · vk and
w = w1 · · ·wl ,

when k + l < r we define the meet to be 0;
if k + l ≥ r , the meet is defined to be

v∧w =
∑

σ∈S(k,`,r)
sign(σ)[vσ(1) · · · vσ(r−`)w1 · · ·w`]·vσ(r−`+1) · · · vσ(k),

where S(k , `, r) is the set of all permutations σ of
{1, . . . , k} so that σ(1) < · · · < σ(r − `) and
σ(r − ` + 1) < · · · < σ(k).
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We have ((1 ∨ 2) ∧ (3 ∨ 4)) ∨ 5 ∨ 6 = 0, because these three
points are collinear. Here’s how to apply the shuffles:

(12 ∧ 34) ∨ 56 = ([134]2− [234]1)56
= [134][256]− [234][156] = 0
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Example: Pascal’s theorem says if six points on a conic are
configured in the way illustrated below, then the resulting
intersection points (7, 8, and 9) are collinear.

We have a matroid MPascal corresponding to this configuration
of points, and a matroid variety VPascal.

Q: What is NPascal?
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Our result and generalizations

Theorem (Sidman, Traves, W (2020))
IPascal is generated by at least one quartic, three independent
cubics, and three independent quadrics in the brackets, besides
the brackets in NPascal.

Evidence (M2) says these are the only defining equations.
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Finding the quartic: The statement of Pascal’s theorem says
we have (12 ∧ 45) ∨ (23 ∧ 56) ∨ (34 ∧ 61) = 0.
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Apply the shuffle products:

(12 ∧ 45) ∨ (23 ∧ 56) ∨ (34 ∧ 61)
= ([145]2− [245]1) ∨ ([256]3− [356]2) ∨ ([361]4− [461]3)

Now “foil”:

(([145]2− [245]1) ∨ ([256]3− [356]2)) ∨ ([361]4− [461]3)
= ([145][256]23− [145][356]22− [245][256]13 + [245][356]12)
∨ ([361]4− [461]3)
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Finish “foiling”:

([145][256]23− [145][356]22− [245][256]13 + [245][356]12)
∨ ([361]4− [461]3)

=[145][256][361][234]−
((((((((((
[145][256][461][233]

−
((((((((((
[145][356][361][224] +

((((((((((
[145][356][461][223]

− [245][256][361][134] +
((((((((((
[245][256][461][133]

+ [245][356][361][124]− [245][356][461][123]
= [145][256][361][234]− [245][256][361][134]

+ [245][356][361][124]− [245][356][461][123] = 0
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Why is the quartic not in NPascal?

Let f denote the quartic. It suffices to find y ∈ V(NPascal) with
f (y) 6= 0.

Let y ∈ Grass(3, 9) be represented by the matrix Ay whose:
first six columns correspond to six points in P2 not on a
conic.
last 3 columns are zero.
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Recall,

NPascal = 〈[127], [238], [349], [457], [568], [169], [789]〉.

Every bracket in NPascal involves one of the columns 7, 8, or 9,
so must vanish on y . So y ∈ V(NPascal).

On the other hand, the first six columns of Ay were chosen so
that the corresponding points don’t satisfy Pascal’s theorem,
the statement encoded in f . So we can’t have f (y) = 0.
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We generalize our theorem to:
more points in the Pascal configuraion (i.e., n ≥ 6 points
on a conic).
Pascal’s theorem in higher dimensions, by a result of
Caminata and Schaffler.
configurations arising from Cayley-Bacharach theorems.
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Example: The twisted cubic.

Caminata & Schaffler (2019) give Grassmann-Cayley
conditions for d + 4 points in Pd to lie on a rational normal
curve, d ≥ 2.

The d = 2 case is Pascal’s theorem, with its converse (proved
independently by Braikenridge and Maclaurin).

The d = 3 case is Pascal-Braikenridge-Maclaurin’s theorem for
a twisted cubic.
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Let P = {P1, . . . ,P7} ⊂ P3.

For each 6-tuple λ = {i1, . . . , i6} ⊂ {1, . . . , 7}, let {j} denote
its complement.

CS: The points in P lie on a twisted cubic if and only if

(i1i2 ∧ i4i5j) ∨ (i2i3 ∧ i5i6j) ∨ (i3i4 ∧ i6i1j) ∨ j = 0.

Each expression in parentheses is an intersection of a line and
a plane, which gives a point. The statement is that the four
points lie on a plane.
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(12 ∧ 457︸ ︷︷ ︸
8

) ∨ (23 ∧ 567︸ ︷︷ ︸
9

) ∨ (34 ∧ 617︸ ︷︷ ︸
10

) ∨ 7 = 0

(12 ∧ 456︸ ︷︷ ︸
11

) ∨ (23 ∧ 576) ∨ (34 ∧ 716) ∨ 6 = 0

(12 ∧ 465) ∨ (23 ∧ 675) ∨ (34 ∧ 715︸ ︷︷ ︸
12

) ∨ 5 = 0

(12 ∧ 564) ∨ (23 ∧ 674︸ ︷︷ ︸
13

) ∨ (35 ∧ 714︸ ︷︷ ︸
14

) ∨ 4 = 0

(12 ∧ 563︸ ︷︷ ︸
15

) ∨ (24 ∧ 673︸ ︷︷ ︸
16

) ∨ (45 ∧ 713︸ ︷︷ ︸
17

) ∨ 3 = 0

(13 ∧ 562︸ ︷︷ ︸
18

) ∨ (34 ∧ 672︸ ︷︷ ︸
19

) ∨ (45 ∧ 712︸ ︷︷ ︸
20

) ∨ 2 = 0

(23 ∧ 561︸ ︷︷ ︸
21

) ∨ (34 ∧ 671) ∨ (45 ∧ 721) ∨ 1 = 0
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Let Q denote the set of points labelled with the underbraces,
and note that |Q| = 14.

Theorem (Sidman, Traves, W 2020)
Let the coordinates of points in P and Q comprise the
columns of a 4× 21 matrix A. Let x ∈ Grass(4, 21) denote the
subspace spanned by the rows of A. Then there are nontrivial
quartics in Ix .
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Other questions:
1 Study the matroid variety correpsonding to the

configuration of points in Pappus’s theorem.
2 Study the matroid varieties corresponding to graphical

matroids (e.g., wheel graphs).
3 Hard: Let Jx ⊆ C[∧rX ] be the ideal generated by the

product of brackets corresponding to bases of Mx (a
“compliment” of Nx ). It is shown (cf. STW) that the
saturation of Nx by Jx is contained in Ix . In fact,√

Nx : J∞x = Ix . What conditions will guarantee that Nx

is radical? (Implies the saturation is radical)

Thank-you!

A. K. Wheeler Defining equations for matroid varieties


	Introduction & Problem
	Paradigm shift: Matroids as point configurations
	Tool: Grassmann-Cayley algebra
	Our result and generalizations

