# Characterizing Cohen-Macaulay power edge ideals of trees

#### James Gossell

Clemson University

#### with M. Cowen, A. Hahn, W.F. Moore, S. Sather-Wagstaff

October 21, 2020

# Outline

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

# Outline

| Graph Theory          | Motivation            | Algebra                                    |              |
|-----------------------|-----------------------|--------------------------------------------|--------------|
| 1. Vertex Covers      |                       | 2. Edge Ideals                             |              |
| 4. The PMU problem    |                       | 5. Power Edge Ideals                       |              |
| 6. MAIN TH            | IEOREM: Finding minim | al PMU Covers                              |              |
| El                    | ectrical Engineeri    | ng                                         |              |
| 3.                    | Phasor Measurement    | Units (PMUs)                               |              |
|                       | Main Part of the Tal  | k                                          |              |
|                       |                       | (日) (종) (종) (종) (종) (종) (종) (종) (종) (종) (종 | ୬ <b>୯</b> ( |
| mes Gossell (Clemson) | Power Edge Ideals     | October 21, 2020                           | 2/16         |

### Definition

Let G = (V, E) be a graph. A vertex cover of G is a subset  $V' \subseteq V$  such that for each edge  $v_i v_j$  in G either  $v_i \in V'$  or  $v_j \in V'$ . A vertex cover is *minimal* if it does not properly contain another vertex cover.

#### Definition

Let G = (V, E) be a graph. A vertex cover of G is a subset  $V' \subseteq V$  such that for each edge  $v_i v_j$  in G either  $v_i \in V'$  or  $v_j \in V'$ . A vertex cover is *minimal* if it does not properly contain another vertex cover.

#### Example

### Definition

Let G be a graph with vertex set  $V = \{v_1, \ldots, v_d\}$ . The *edge ideal* of G is the ideal  $I_G \subseteq R = A[X_1, \ldots, X_d]$  that is "generated by the edges of G"

 $I_G = (\{X_i X_j \mid v_i v_j \text{ is an edge in } G\})R$ 

#### Definition

Let G be a graph with vertex set  $V = \{v_1, \ldots, v_d\}$ . The *edge ideal* of G is the ideal  $I_G \subseteq R = A[X_1, \ldots, X_d]$  that is "generated by the edges of G"

 $I_G = (\{X_i X_j \mid v_i v_j \text{ is an edge in } G\})R$ 

#### Example

Set 
$$R = A[X_1, X_2, X_3, X_4]$$
. The graph  $G = v_1 - v_2$ 

has edge ideal  $I_G = (X_1X_2, X_2X_3, X_2X_4, X_3X_4)R$ .

#### Definition

Let G be a graph with vertex set  $V = \{v_1, \ldots, v_d\}$ . The *edge ideal* of G is the ideal  $I_G \subseteq R = A[X_1, \ldots, X_d]$  that is "generated by the edges of G"

 $I_G = (\{X_i X_j \mid v_i v_j \text{ is an edge in } G\})R$ 

#### Example

Set 
$$R = A[X_1, X_2, X_3, X_4]$$
. The graph  $G = v_1 - v_2$   
 $V_1 - v_3$ 

has edge ideal  $I_G = (X_1X_2, X_2X_3, X_2X_4, X_3X_4)R$ .

The minimal vertex covers for *G* are  $\{v_1, v_3, v_4\}, \{v_2, v_3\}, \{v_2, v_4\}.$ 

### Definition

The edge ideal  $I_G \subseteq R$  has the following *m*-irreducible decompositions:

$$I_G = \bigcap_{V' \text{ min}} P_{V'}$$

#### Example

Set 
$$R = A[X_1, X_2, X_3, X_4]$$
. The graph  $G = v_1 - v_2$   
 $\downarrow$   
has edge ideal  $I_G = (X_1X_2, X_2X_3, X_2X_4, X_3X_4)R$ .

The minimal vertex covers for *G* are  $\{v_1, v_3, v_4\}, \{v_2, v_3\}, \{v_2, v_4\}.$ 

### Definition

The edge ideal  $I_G \subseteq R$  has the following *m*-irreducible decompositions:

$$I_G = \bigcap_{V' \text{ min}} P_{V'}$$

#### Example

Set 
$$R = A[X_1, X_2, X_3, X_4]$$
. The graph  $G = v_1 - v_2$   
 $V_4 - v_3$   
has edge ideal  $I_G = (X_1X_2, X_2X_3, X_2X_4, X_3X_4)R$ .

The minimal vertex covers for *G* are  $\{v_1, v_3, v_4\}$ ,  $\{v_2, v_3\}$ ,  $\{v_2, v_4\}$ . We obtain the following irredundant *m*-irreducible decomposition:

$$I_G = (X_1, X_3, X_4) R \cap (X_2, X_3) R \cap (X_2, X_4) R.$$

Let G be a tree. The following conditions are equivalent:

Let G be a tree. The following conditions are equivalent:

**(** G is unmixed. (every minimal vertex cover has the same size)

Let G be a tree. The following conditions are equivalent:

- **(** G is unmixed. (every minimal vertex cover has the same size)
- G is a suspension of a subtree G'.

Let G be a tree. The following conditions are equivalent:

- G is unmixed. (every minimal vertex cover has the same size)
- G is a suspension of a subtree G'.
- $\bigcirc$  I<sub>G</sub> is Cohen-Macaualay.

Let G be a tree. The following conditions are equivalent:

- G is unmixed. (every minimal vertex cover has the same size)
- G is a suspension of a subtree G'.
- I<sub>G</sub> is Cohen-Macaualay.

### Example

#### Let

$$T = v_{1,1} - v_{1,2} - v_{1,3}, \quad T' = v_{1,1} - v_{1,2} - v_{1,3}$$
$$| | | \\v_{2,1} - v_{2,2} - v_{2,3}$$

Note that T is the suspension of T'. Thus, T is Cohen-Macaulay.

Image: A matrix and A matrix

### Definition

- In an electrical power system, a *bus* is a substation where *transmission lines* meet.
- Each line connects two buses.

### Example

The graph



represents a power system with six buses and six lines.

### Definition

• A *Phasor measurement unit (PMU)* is a device placed at a bus in an electrical power system to monitor the voltage at the bus and the current in all lines connected to it. A *PMU placement* is a set of buses where PMUs are placed.

### Definition

• A *Phasor measurement unit (PMU)* is a device placed at a bus in an electrical power system to monitor the voltage at the bus and the current in all lines connected to it. A *PMU placement* is a set of buses where PMUs are placed.



### Definition

- A *Phasor measurement unit (PMU)* is a device placed at a bus in an electrical power system to monitor the voltage at the bus and the current in all lines connected to it. A *PMU placement* is a set of buses where PMUs are placed.
- A bus in the system is *observable* if its voltage is known. A line is the system is *observable* if its current is known.



### Definition

- A *Phasor measurement unit (PMU)* is a device placed at a bus in an electrical power system to monitor the voltage at the bus and the current in all lines connected to it. A *PMU placement* is a set of buses where PMUs are placed.
- A bus in the system is *observable* if its voltage is known. A line is the system is *observable* if its current is known.
- A *PMU cover* of the system is a placement of some PMUs on buses making the entire system observable.



- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to an observable vertex v are observable except for one, then all of the lines incident to v are observable.

- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to an observable vertex v are observable except for one, then all of the lines incident to v are observable.



- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to an observable vertex v are observable except for one, then all of the lines incident to v are observable.



- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to an observable vertex v are observable except for one, then all of the lines incident to v are observable.





### Rule

- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to an observable vertex v are observable except for one, then all of the lines incident to v are observable.



### Rule

- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to an observable vertex v are observable except for one, then all of the lines incident to v are observable.



### Rule

- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to an observable vertex v are observable except for one, then all of the lines incident to v are observable.



### Rule

- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to an observable vertex v are observable except for one, then all of the lines incident to v are observable.



### Rule

- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to an observable vertex v are observable except for one, then all of the lines incident to v are observable.



### Rule

- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to an observable vertex v are observable except for one, then all of the lines incident to v are observable.



### Rule

- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to an observable vertex v are observable except for one, then all of the lines incident to v are observable.



### Rule

- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to an observable vertex v are observable except for one, then all of the lines incident to v are observable.



- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to a vertex v are observable except for one, then all of the lines incident to v are observable.



- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to a vertex v are observable except for one, then all of the lines incident to v are observable.



#### Rule

- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to a vertex v are observable except for one, then all of the lines incident to v are observable.

### Example



#### Rule

- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to a vertex v are observable except for one, then all of the lines incident to v are observable.

### Example



#### Rule

- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to a vertex v are observable except for one, then all of the lines incident to v are observable.

### Example



#### Rule

- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to a vertex v are observable except for one, then all of the lines incident to v are observable.

### Example



#### Rule

- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to a vertex v are observable except for one, then all of the lines incident to v are observable.

### Example



#### Rule

- Place a PMU at vertex v. Then the vertex v is observable and every line incident to v is observable.
- (Ohm) A bus incident to an observable line is observable.
- (Ohm) A line incident to two observable buses is observable.
- (Kirchoff) If all the lines incident to a vertex v are observable except for one, then all of the lines incident to v are observable.



#### Definition

Let G be a graph with vertex set  $V = \{v_1, \ldots, v_d\}$  and set  $R = A[X_1, \ldots, X_d]$ . The *power edge ideal* of G is

$$I_G^P = \bigcap_{V'} P_{V'}$$

where the intersection is taken over all PMU covers of G.

#### Definition

Let G be a graph with vertex set  $V = \{v_1, \ldots, v_d\}$  and set  $R = A[X_1, \ldots, X_d]$ . The *power edge ideal* of G is

$$I_G^P = \bigcap_{V'} P_{V'}$$

where the intersection is taken over all PMU covers of G.



### The PMU Placement Problem

Detect any and all outages in the system and minimize cost. I.e., find the smallest number of PMUs needed to monitor the entire system.

### The PMU Placement Problem

Detect any and all outages in the system and minimize cost. I.e., find the smallest number of PMUs needed to monitor the entire system.

### A Problem with the PMU Placement Problem

The PMU Placement Problem is NP-complete (HHHH).

### The PMU Placement Problem

Detect any and all outages in the system and minimize cost. I.e., find the smallest number of PMUs needed to monitor the entire system.

### A Problem with the PMU Placement Problem

The PMU Placement Problem is NP-complete (HHHH).

#### Goal

Study the problem algebraically and find some interesting examples of ideals along the way. Specifically, we will:

- Characterize the trees T such that  $I_T^P$  is unmixed, i.e., such that all minimal PMU covers have the same size.
- Characterize the trees T such that  $I_T^P$  is Cohen-Macaulay.

Let G be a tree. The following conditions are equivalent:

< 1 k

Let G be a tree. The following conditions are equivalent:

G is unmixed with respect to PMU covers.

# Characterizing Unmixed Trees

### Theorem (CGHMS)

Let G be a tree. The following conditions are equivalent:

- **O** G is unmixed with respect to PMU covers.
- **(D)** Every vertex of deg.  $\geq$  3 is adjacent to exactly 2 vertices of deg.  $\leq$  2.

# Characterizing Unmixed Trees

### Theorem (CGHMS)

Let G be a tree. The following conditions are equivalent:

- **O** G is unmixed with respect to PMU covers.
- **(D)** Every vertex of deg.  $\geq$  3 is adjacent to exactly 2 vertices of deg.  $\leq$  2.
- G is obtained by "nicely linking" a sequence of paths.

Let G be a tree. The following conditions are equivalent:

- **O** G is unmixed with respect to PMU covers.
- **(D)** Every vertex of deg.  $\geq$  3 is adjacent to exactly 2 vertices of deg.  $\leq$  2.
- G is obtained by "nicely linking" a sequence of paths.
   PMU Covers: Choose one vertex from each path



Let G be a tree. The following conditions are equivalent:

- **O** G is unmixed with respect to PMU covers.
- **(D)** Every vertex of deg.  $\geq$  3 is adjacent to exactly 2 vertices of deg.  $\leq$  2.
- G is obtained by "nicely linking" a sequence of paths.
   PMU Covers: Choose one vertex from each path



Let G be a tree. The following conditions are equivalent:

- **O** G is unmixed with respect to PMU covers.
- **(D)** Every vertex of deg.  $\geq$  3 is adjacent to exactly 2 vertices of deg.  $\leq$  2.
- G is obtained by "nicely linking" a sequence of paths.
   PMU Covers: Choose one vertex from each path



Let G be a tree. The following conditions are equivalent:

- **O** G is unmixed with respect to PMU covers.
- **(D)** Every vertex of deg.  $\geq$  3 is adjacent to exactly 2 vertices of deg.  $\leq$  2.
- G is obtained by "nicely linking" a sequence of paths.
   PMU Covers: Choose one vertex from each path



Let G be a tree. The following conditions are equivalent:

- **O** G is unmixed with respect to PMU covers.
- **(D)** Every vertex of deg.  $\geq$  3 is adjacent to exactly 2 vertices of deg.  $\leq$  2.
- G is obtained by "nicely linking" a sequence of paths.
   PMU Covers: Choose one vertex from each path



Let G be a tree. The following conditions are equivalent:

- **O** G is unmixed with respect to PMU covers.
- **(D)** Every vertex of deg.  $\geq$  3 is adjacent to exactly 2 vertices of deg.  $\leq$  2.
- G is obtained by "nicely linking" a sequence of paths.
   PMU Covers: Choose one vertex from each path



Let G be a tree. The following conditions are equivalent:

- **O** G is unmixed with respect to PMU covers.
- **(D)** Every vertex of deg.  $\geq$  3 is adjacent to exactly 2 vertices of deg.  $\leq$  2.
- G is obtained by "nicely linking" a sequence of paths.
   PMU Covers: Choose one vertex from each path



Let G be a tree. The following conditions are equivalent:

- **O** G is unmixed with respect to PMU covers.
- **(D)** Every vertex of deg.  $\geq$  3 is adjacent to exactly 2 vertices of deg.  $\leq$  2.
- G is obtained by "nicely linking" a sequence of paths.
   PMU Covers: Choose one vertex from each path



Let G be a tree. The following conditions are equivalent:

- **O** G is unmixed with respect to PMU covers.
- **(D)** Every vertex of deg.  $\geq$  3 is adjacent to exactly 2 vertices of deg.  $\leq$  2.
- G is obtained by "nicely linking" a sequence of paths.
   PMU Covers: Choose one vertex from each path



Let G be a tree. The following conditions are equivalent:

- **O** G is unmixed with respect to PMU covers.
- **(D)** Every vertex of deg.  $\geq$  3 is adjacent to exactly 2 vertices of deg.  $\leq$  2.
- G is obtained by "nicely linking" a sequence of paths.
   PMU Covers: Choose one vertex from each path



Let G be a tree. The following conditions are equivalent:

- **O** G is unmixed with respect to PMU covers.
- **(D)** Every vertex of deg.  $\geq$  3 is adjacent to exactly 2 vertices of deg.  $\leq$  2.
- G is obtained by "nicely linking" a sequence of paths.
   PMU Covers: Choose one vertex from each path



Let G be a tree. The following conditions are equivalent:

- **O** G is unmixed with respect to PMU covers.
- **(D)** Every vertex of deg.  $\geq$  3 is adjacent to exactly 2 vertices of deg.  $\leq$  2.
- G is obtained by "nicely linking" a sequence of paths.
   -Generators of I<sub>G</sub><sup>P</sup>: The product of the vertices in the paths.



Let G be a tree. The following conditions are equivalent:

- **G** is unmixed with respect to PMU covers.
- **(D)** Every vertex of deg.  $\geq$  3 is adjacent to exactly 2 vertices of deg.  $\leq$  2.
- G is obtained by "nicely linking" a sequence of paths.
   -Generators of I<sub>G</sub><sup>P</sup>: The product of the vertices in the paths.



# Alegraic Implications

### Summary

For any ideal I, we have

I is a CI  $\implies$  I is Gor.  $\implies$  I is CM  $\implies$  I is unmixed

.∋...>

#### Summary

For any ideal I, we have

I is a CI  $\implies$  I is Gor.  $\implies$  I is CM  $\implies$  I is unmixed

For any tree T, we have

 $I_T^P$  is a CI  $\iff I_T^P$  is Gor.  $\iff I_T^P$  is CM  $\iff I_T^P$  is unmixed

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

### Summary

For any ideal I, we have

I is a CI  $\implies$  I is Gor.  $\implies$  I is CM  $\implies$  I is unmixed

For any tree T, we have

$$I_T^P$$
 is a CI  $\iff I_T^P$  is Gor.  $\iff I_T^P$  is CM  $\iff I_T^P$  is unmixed

### Claim

In general, for abitrary graphs 
$$G$$
,  
 $I_G^P$  is a CI  $\not\models_G^P$  is Gor.  $\not\models_G^P$  is CM  $\not\models_G^P$  is unmixed

3

イロト イポト イヨト イヨト

# Summery

### Theorem (Villareal)

Let G be a tree. The following conditions are equivalent:

- **(** *G* is unmixed with respect to vertex covers.
- G is a suspension of a subtree G'.
- **(1)** Every vertex of deg.  $\geq 2$  is adjacent to exactly 1 vertex of deg. 1.
- I<sub>G</sub> is Cohen-Macaualay.

### Theorem (CGHMS)

Let G be a tree. The following conditions are equivalent:

- G is unmixed with respect to PMU covers.
- G is obtained by "nicely linking" a sequence of paths.
- **(D)** Every vertex of deg.  $\geq$  3 is adjacent to exactly 2 vertices of deg.  $\leq$  2.
- I<sub>G</sub><sup>P</sup> is Cohen-Macaulay.
- I<sub>G</sub><sup>P</sup> is Gorenstein and Complete Intersection.

#### Claim

# $I_G^P$ is a CI $\not = I_G^P$ is Gor. $\not = I_G^P$ is CM $\not = I_G^P$ is unmixed

æ

< ∃ >

Image: A matrix and a matrix

# Counterexamples

### Claim

$$I_G^P$$
 is a CI  $\notin I_G^P$  is Gor.  $\notin I_G^P$  is CM  $\notin I_G^P$  is unmixed

# Example $(I_G^P \text{ can} \text{ be Gorenstein but not a Complete Intersection})$



### Claim

$$I_G^P$$
 is a CI  $\neq I_G^P$  is Gor.  $\stackrel{?}{\neq} I_G^P$  is CM  $\neq I_G^P$  is unmixed

## Example $(I_G^P \text{ can be Cohen-Macaulay but not Gorenstein})$

$$v_1 - v_2 - v_3$$
  
 $| - v_5 - v_4$ 

< 4<sup>3</sup> ► <

æ

### Claim

$$I_G^P$$
 is a CI  $\neq I_G^P$  is Gor.  $\neq I_G^P$  is CM  $\stackrel{?}{\neq} I_G^P$  is unmixed

## Example $(I_G^P \text{ can be } Unmixed \text{ but not Cohen-Macaulay})$

$$v_1 - v_2 - v_3 - v_4 - v_5$$
  
| | |  
 $v_6 - v_7 - v_8 - v_9 - v_{10}$ 

æ

#### Villareal, Rafael H., 1990

Cohen-macaulay graphs

Manuscripta Mathematica 66(1), 277-293.

 Teresa W. Haynes, Sandra M. Hedetniemi, Stephen T. Hedetniemi, Michael A. Henning 2002
 Domination in Graphs Applied to Electric Power Networks SIAM J. Discrete Math 15(4), 519-529.



W. Frank Moore, Mark Rogers, Sean Sather-Wagstaff 2017 Monomial Ideals and Their Decompositions.