Extremal Singularities in Positive Characteristic

(joint with Zhibek Kadyrsizova, Jennifer Kenkel, Jyoti Singh, Karen Smith, Adela Vraciu, and Emily Witt)

(and with Anna Brosowsky, Tim Ryan, and Karen Smith)

Motivating Question: What is the most singular possible hypersurface (of degree d) in char p>0? One answer: Those with minimal F-pure threshold. Def: let f=K(x,...,xn), K char p>0, f=m Then $fpt_{m}(f) := \sup \left\{ \frac{V}{P^{e}} \mid f^{N} \notin m^{(p^{e}]} = \left\{ x_{1, \dots, N}^{p^{e}} \right\} \right\}$ $= \inf \left\{ N_{P^{e}} \mid f^{N} \in m^{(p^{e}]} \right\}$ Renarks: Say f is degree d (n vars) k chor p>0. Then • OC fpt(f) <= 1 • In fact, you can show: /d <= fpf(f) <= Yd • In general, the smaller the fpt(f), the more singular f is • If f is smooth, the fp+(F)=1• for any c_1 , $fp+(fr) = \frac{fp+(F)}{r}$ Ex fpt $(x^{d}) = \frac{1}{d}$ EX $y^2 - \chi^3 = 0$ Xy=0 $f_{p} + (y^{2} - \chi^{3}) = \begin{cases} \frac{1}{2} & p \neq 2 \\ \frac{1}{2} & p = 3 \\ \frac{5}{6} & p \equiv 1 \mod 6 \\ \frac{5}{6} - \frac{1}{6p} & p \equiv 5 \mod 6 \end{cases}$ fpr (xy)=1

Extremal Singularities in Positive Characteristic Page 1

Extremal Singularities in Positive Characteristic Page 2

Then
$$\Psi(t) = (x_1^{t^*} \cdots x_n^{t^*})(g^{t^*})^{t^*}Ag\left(\begin{array}{c} x_1\\ \vdots\\ x_n\end{array}\right)$$

Def A Frobenius durm is rank r if the associated matrix A has reak r .
Thus 2 (KK-SSVW) (Beauville '90 n24) If f is a Frobenius turm $n \circ f$ reak n .
Thus $(KK-SSVW)$ (Beauville '90 n24) If f is a Frobenius turm $n \circ f$ reak n .
Thus $(KK-SSVW)$ (Beauville '90 n24) If f is a Frobenius turm $f \sim x_1^{t+1} + \dots + x_n^{t+n}$ (ie $A \circ \begin{pmatrix} 1 & \cdots \\ 0 & 1 \end{pmatrix} \end{pmatrix}$
Thus $(KK-SSVW)$ There are finitely many Frobenius threas in any bounded degree 1 at of verifieds (up to (lunge c).
Must specifically, there is a bijection from f (in a variable of f in n variables $(up to (lunge c)) and $(d_{1} n + matrix)$.
Sketters: First, by induction (a_1 a lot of the coordinates) is the partitions f with f and f (d_{2} reaction f in f the matrix A associated to a Trobetien f and f with f is a f the second f in f is a first f with f is a f of f in f in f in f is a first f in f in f in f is a f in f is a f of f in f in f in f is a f of f in f in f is a f in f in f in f is a f in f in f in f in f is a f in f in f in f in f is a f in f in f in f in f is a f in f in f in f in f in f in f is a f in f in$

Def Given a Frobenius form f in "spece" two, associate
to f a directed graph
$$f_{f}$$
 on n vertics
by $x_{i} \rightarrow x_{i}$ (2) $x_{i} \rightarrow x_{i}$ is a two of f
Ex (0) $x_{i} \rightarrow x_{i}$ (2) $x_{i} \rightarrow x_{i} \rightarrow x_{i}$
 $x_{i} \rightarrow x_{i}$ (2) $x_{i} \rightarrow x_{i}$ $x_{i} \rightarrow x_{i}$
 $x_{i} \rightarrow x_{i}$ (2) $x_{i} \rightarrow x_{i}$ $x_{i} \rightarrow x_{i}$
 $x_{i} \rightarrow x_{i}$ $x_{i} \rightarrow x_{i}$ $x_{i} \rightarrow x_{i}$
 $x_{i} \rightarrow x_{i}$ $x_{i} \rightarrow x_{i}$ $x_{i} \rightarrow x_{i}$
 $x_{i} \rightarrow x_{i}$ $x_{i} \rightarrow x_{i}$ $x_{i} \rightarrow x_{i}$
 $x_{i} \rightarrow x_{i}$ $x_{i} \rightarrow x_{i}$ $x_{i} \rightarrow x_{i}$
Not: Γ_{f} can have
 \cdot loops (by assumptions
 \cdot directed chains $\cdot x_{i}$
 $\cdot x_{i}$
Side note: A is the directed adjocancy natrix of Γ_{f} .
Note: Γ_{f} has an ℓ -cycle, then
 $f^{-1} = x_{i}^{f} x_{i} + x_{i}^{f} x_{i} + \cdots + x_{i}^{f} x_{i} + x_{i}^{f} x_{i} + f^{f} (x_{e_{1}}, \dots, x_{e_{i}})$
 $\frac{1}{1000} \frac{1}{1000} \frac{1}{100} \frac{1}{1000} \frac{1}{1000} \frac{1}{100} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{100} \frac{1}{10$