The homotopy Lie algebra of a Tor-independent tensor product

Joint with M. Gheibi, D. Jorgensen, N. Packauskas and J. Pollitz

SET UP
$$(R, m, K)$$
 LOCAL (OMM, $I_1, I_1 \subseteq M$ IDEALS
 $S_1 = \frac{R}{I_1}$, $S_2 = \frac{R}{I_2}$ $S = S_1 \approx S_2 = \frac{R}{I_1 + I_2}$

QUESTION: HOW DO THE HOMOLOGICAL PROPERTIES OF R, SI, S2, S RELATE)

IN A '75 PADER AURAMOU STUDIED THE RELATION BETWEEN THE TOR ALGEBRAS OF THESE RINKS

THM(TATE, GUILIKSEN, SCHOELLER)

THERE IS A MINIMAL DGA RESOLUTION OF K IR

DEF: Tork(K,K):= FRK

THM(AURAMON '75):

IF R HOULAR, $I_1, I_2 \leq m^2$ AND $I_1I_2 = I_1 \cap I_2$, THEN $Tor^{S}(K, K) \leq Tor^{S}(K, K) \otimes Tor^{S_2}(K, K)$ $Tor^{R}(K, K)$ DEF: $Q: R \rightarrow S$ IT INDUCES A MAP $F_R \rightarrow F_S$ $T_{\sigma}^{q}(k,k): \Gamma_{\sigma}^{k}(k,k) \rightarrow T_{\sigma}^{s}(k,k)$ q is <u>SMACC</u> IF $\Gamma_{\sigma}^{q}(k,k)$ is inservice THMC AURAMON (78): $R \stackrel{q}{=} JS_{r}$ $q_{2} \int J$

$$IF ONE OF THE P: IS SMALL AND $Tor_{so}^{R}(S, S) = 0 - THEN$
$$Tor^{S}(K, K) = Tor^{S}(K, K) \otimes \tilde{lor}^{S}(K, K)$$

$$Tor^{R}(K, K)$$$$

OUR WORK: WE INDESTIGATED HOW THE HOMOTOPY LIE ALGEBRAS OF- THRSE RWGS RELATE R, S, S, S2, S

CONSTRUCTION: F-SK F MINIMAL DEA RES OF K Derg (F,F) = { = { (Young (F,F) | = SATISFIES THE S LEIBNIT AULT

DEF: THE MOMOTORY LIE ALG JT(K): H (Der, (F, F))

EX: q: R - >> S R KEG => q Acmost Small

THM(FGJPP)
$$R \xrightarrow{Y_1} G_1$$

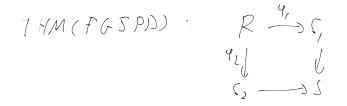
 $Y_2 \bigcup U$
 $S_2 \xrightarrow{\rightarrow} S$

 $\begin{aligned} \text{IF ONE OF THE } f_{C} & \text{IS ALMOST SMALL AND } & \text{Torse}^{R}(S_{1}, S_{2}) \neq 0, \\ & \text{THEA} \end{aligned}$ $\begin{aligned} \text{TCS} & \equiv & \text{TC}(S_{1}) + \text{TCS}_{1} \\ & \text{TCR} \end{aligned}$

1) A SEMIFREE EXTENSION OF R IS A DOA REX] OBTAINED B-1 ADDING EXTERIOR VARIABLES IN ODD DEG AND POLYNOMIAL VARIABLES IN EVEN DEG

GULLIKSEN MINIMALITY LET Q C P SS R P SS S QEWJ MIN MOD FOR P REXJ MIN MOD FOR P

DEF: f 15 e-GULLIKSEN MINIMAL IF QEX, WI FATISFIES $\begin{pmatrix} - & -\frac{\partial e}{\partial x} \\ - & -\frac{\partial e}{\partial x} \\ - & -\frac{\partial e}{\partial x} \end{pmatrix}$



 $IF = P, AND P_2 ARE GULLINSEN MWIMAN AND POR_{(S_1, S_2)=0}$ THEN $TT(S) \cong TT(S_1) \times T(S_2)$ T(R)

THM(FGJDD) IF (HAR K= O AND PORSO(SI,S2)=U

THEN $\pi(S) \cong \pi(S,) \times \pi(S_{L})$ $\pi(K)$

RECALL: 8 LIE ALG US = $\frac{\overline{18}}{(XBY - C-1)^{WIIYI}Y \otimes X - E \times iA}$, ×, Y eg)

FACT: $Hom_{k}(U\pi(R), \kappa) \cong Tor^{R}(\kappa, \kappa)$ FACT: · V PRESERVES PULLBACKS · $Hor_{K}(-, \kappa)$ SENDS PULLBACKS TO PUSHOUTS $\begin{array}{c} (ORG(CARY (FGJPD)) \\ R \xrightarrow{4} JS, \\ Y_{2}J \\ I \\ S_{2} \xrightarrow{1} S \end{array}$ $\begin{array}{c} WITIX & Tor_{S_{0}}^{R}(S_{1}, S_{2}) \xrightarrow{1} G \\ S_{1} \xrightarrow{1} S \end{array}$

1) 9: 15 ALMOST SMALL PCK SOME i 2) 9,92 ARE GULLINSER MINIMAL 3) (HAR K=0

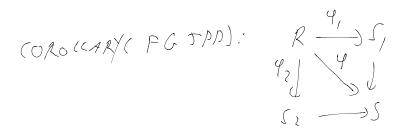
$$THFN \quad Tor^{S}(H, H) \cong Tor^{S'}(H, K) \otimes \tilde{for}^{S_{2}}(H, K)$$
$$for^{R}(H, H)$$

GOLODNESS REXI: q: R-DDS REXI-DS MW MODEL THE FIBER OF Q IS F^Q = REXI & K R

THEN $\pi(F^{q}) \cong \pi(F^{q}) \times \pi(F^{q})$ THEN $\pi(F^{q}) \cong \pi(F^{q}) \times \pi(F^{q})$ AVRAMOU: f is GOIOD (=) $\pi(f^{q})$ is FAFR (OROICARY: IF $for_{26}^{k}(S_{1}, G_{2}): 0 =) f(R \rightarrow S)$ is NOT GOLOD (TABLE COHOMOLOGX

DEFILIF A 15 A URADED CONNECTED K-ACG DEDTH A: INF & M201 EXEM(K,A) = 0 UM(R) " THM (AURAMOV-URLICHE),' IF DEPTH EXER(K,K)=2 THEN EXER(K,K) HAS A SIMPLE STRUCTURE

THMC FERRARD: IF RIGOREN(TEN AND DEPTH EXER(KIH) J=2 ΓHEN $\overline{E_{A}(K_{i}K_{i})} \cong E_{A}(K_{i}K_{i}) \propto 2^{1-o(imR)} E_{A}(K_{i}K_{i})^{*}$



IF q_1, q_2 MINIMAL COHEN INRES S_1, S_2 SINGULAR

$$T\sigma_{s_0}^{\mathcal{R}}(S_1, S_2) = 0$$

$$T H \in \mathcal{N} \qquad D \in PT H \quad \mathcal{E}_{\mathcal{R}}^{\mathcal{C}}(K, H) \cong 2$$

$$PRooF: \quad D \in PT H \quad \mathcal{E}_{\mathcal{R}}^{\mathcal{C}}(K, K) = D \in PT H \quad U \pi (F^{\mathcal{Q}})$$

$$= D \in PT H \quad U \pi (F^{\mathcal{Q}}) + D \in PT H \quad U \pi (F^{\mathcal{Q}})$$

$$= D \in PT H \quad \mathcal{E}_{\mathcal{R}}^{\mathcal{C}}(H_1 H) + D \in PT H \quad \mathcal{E}_{\mathcal{R}}^{\mathcal{C}}(H_1 H)$$

$$= 1 + 1 = 2$$

$$\blacksquare$$

PROP (FGJPP, MORE - JORGENSEN)
Torso (S, S2)

$$f$$
 is GOR (S) f_{1}, f_{2} GOR
 f is GOR (S) f_{1}, f_{2} GOR
 $poinCARE$ SERIES
 $rorologically (FGJPP)$:
 $R \xrightarrow{4}{} S_{1}$ $roron R (S_{1}, S_{2}) = 0$
 $S_{1} \xrightarrow{5} S$

 $\frac{1F}{T} \frac{AT}{K} \frac{1FAST}{K} \frac{1}{K} \frac{1}{K$

PROOF:
$$(1: R \rightarrow S) \land (mosr small)$$

 $(=) \pi^{2}(S) \rightarrow \pi^{2}(R) \qquad (S \qquad SUKT)$
 $B(OVR \qquad MIM \qquad \pi^{2}(S) = \pi^{2}(S_{1}) \propto \pi^{2}(S_{2})$
 $\pi^{2}(R) \rightarrow \pi^{2}(S) \rightarrow \pi^{2}(S_{1}) \times \pi^{2}(S_{2}) \rightarrow \pi^{2}(R) \rightarrow 0$
 $Almosi
find (C) = Gin \pi^{1}(S_{1}) + Gim \pi^{1}(S_{2}) - Gin \pi^{1}(R)$
 $(=) L$

$$(HE(K \quad \operatorname{For}_{S}^{R}(S_{1},S_{2}) \rightarrow 0 \quad GIUES \quad Y_{6}U \quad THE \quad GOURCHY \quad FOR$$

$$\widehat{c} = I$$

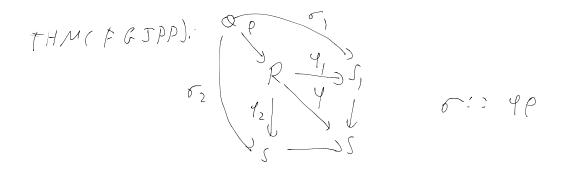
$$FA(T: \quad P_{K}^{R}(E) = \int C \quad (I + E^{2i-1}) \quad Gim \quad \pi^{2i}(R) \quad A$$

$$\widehat{c} = I$$

$$THM(QUILLEN): IF (MARK=0)$$

$$q: R \rightarrow S S , THEN$$

$$\pi(F^{q}) \cong \Pi(S|R'K)$$



 $\begin{aligned} &|F \ (HARK=0 \ (OR \ IF \ \Psi_{1}, \Psi_{2} \ ARF \ P-GULLIKSEN MINIMUL) \\ &AND \ \mathcal{T}_{S_{0}}^{\mathcal{R}}(S_{1}, S_{2})=0, \quad F \not \neq \mathcal{N} \\ &\mathcal{T}_{S_{0}}^{\mathcal{R}}(F^{\sigma}) \cong \mathcal{T}_{S_{0}}(F^{\sigma}) \xrightarrow{\mathcal{R}}(F^{\sigma}) \\ &\mathcal{T}_{S_{0}}(F^{\sigma}) \cong \mathcal{T}_{S_{0}}(F^{\sigma}) \xrightarrow{\mathcal{R}}(F^{\sigma}) \end{aligned}$

THM(QUILLEN): IF CHARKES AND A, B ARE LOCAL NOEYD K-ALG WITH RESIDUE FIELDE AND ESSENTIALLY OF FINITE TYDE, THEN D(KIASBJK) = D(KIASK) × D(KIBJK)