Base Change Along the Frobenius Endomorphism And The Gorenstein Property

Pinches Dirnfeld

University of Utah

March 9, 2021

Motivation

This talk is about the structure and properties of the category of complexes of finite injective dimension over commutative Noetherian rings.

Some well known examples.

A local ring (R, \mathfrak{m}, k) is regular if and only if k has finite injective dimension.

A local ring (R, \mathfrak{m}, k) that admits a finitely generated module of finite injective dimension is Cohen-Macaulay.

A commutative Noetherian ring R admits a finitely generated module of finite injective and projective dimension if and only if R is Gorenstein.

Introduction

Setting and Notation:

 (R,\mathfrak{m},k) a local ring.

An endomorphism $\varphi \colon R \to R$ is contracting if $\varphi^i(\mathfrak{m}) \subseteq \mathfrak{m}^2$ for some i > 0.

With φ contracting, we set \mathbb{R}^{φ} to be R with the right module structure induced by φ .

 $\mathsf{I}(R)$ is the subcategory of complexes of finite injective dimension.

 $\mathsf{I}^{\mathrm{fg}}(R)$ is the subcategory of $\mathsf{I}(R)$ consisting of complexes with finitely generated homology.

 $\mathsf{I}^{\mathrm{fl}}(R)$ is the subcategory of $\mathsf{I}^{\mathrm{fg}}(R)$ consisting of complexes with finitely length homology.

Examples of Contracting Endomorphisms

In characteristic p > 0, the Frobenius is contracting.

$$R = k[x, y]/(x^3, y^3)$$
 with $\varphi(x) = y$ and $\varphi(y) = y^2$

There are interesting examples coming from semi-group rings.

Motivation

Theorem 1 (Falahola, Marley; 2018)

Let φ be a contracting endomorphism on a Cohen-Macaulay local ring R, and ω_R a canonical module. Then inj-dim_R($\mathbb{R}^{\varphi} \otimes_R \omega_R$) < ∞ if and only if R is Gorenstein.

Question: Does the theorem hold if ω_R is a dualizing complex? A: NO! **Recall:** A complex D is a *dualizing complex* if the following hold:

- (i) $\operatorname{inj-dim}_R(D) < \infty$.
- (ii) H(D) is finitely generated.
- (iii) The natural map $R \to \operatorname{RHom}_R(D, D)$ is a quasi-isomorphism.

Question (Falahola, Marley; 2018): Let φ be contracting, and D a dualizing complex. If $\operatorname{inj-dim}_R(\mathbb{R}^{\varphi} \otimes_R^{\mathbf{L}} D) < \infty$ is Rnecessarily Gorenstein?

Main result

Theorem 2(-)

Let $\varphi \colon R \to R$ be a contracting endomorphism. The following are equivalent.

- (i) R is Gorenstein.
- (ii) There exists an R-complex $X \in \mathsf{I}^{\mathrm{fg}}(R)$ with $H(X) \neq 0$ such that, $\operatorname{inj-dim}_{R}(\mathbb{R}^{\varphi} \otimes_{R}^{I} X) < \infty$.

(iii) For every $X \in \mathsf{I}^{\mathrm{fg}}(R)$ we have $\operatorname{inj-dim}_{R}(\mathrm{R}^{\varphi} \otimes_{R}^{L} X) < \infty$.

Outline of Proof

 $(i) \implies (iii)$ is well known due to Foxby.

 $(iii) \implies (ii)$ is easy. We just need to show that every local ring has a complex $X \in \mathsf{I}^{\mathrm{fg}}(R)$ with nonzero homology. The complex $K^R \otimes_R E(k)$ does the trick.

 $(ii) \implies (i)$ is the new implication.

Outline of $(ii) \implies (i)$

Let $X \in \mathsf{l}^{\mathrm{fg}}(R)$ with $H(X) \neq 0$ s.t. $\operatorname{inj-dim}_{R}(\mathbb{R}^{\varphi} \otimes_{R}^{\mathbf{L}} X) < \infty$. We have a series of implications:

(a)
$$\implies$$
 there exists some $Y \in \mathsf{I}^{\mathrm{fl}}(R)$ with $H(Y) \neq 0$ s.t.
inj-dim_R($\mathbf{R}^{\varphi} \otimes_{R}^{\mathbf{L}} Y$) $< \infty$.

(b) \implies for all $Y \in \mathsf{l}^{\mathrm{fl}}(R)$ we have $\operatorname{inj-dim}_{R}(\mathsf{R}^{\varphi} \otimes_{R}^{\mathbf{L}} Y) < \infty$.

(c)
$$\implies$$
 for all $Y \in I^{\mathrm{fl}}(R)$ and for all $i > 0$ we have inj-dim_R($\mathbf{R}^{\varphi^{i}} \otimes_{R}^{\mathbf{L}} Y$) $< \infty$.

- (d) $\implies \operatorname{proj-dim}_R(Y) < \infty$.
- (e) \implies that *R* is Gorenstein.

Thick Subcategories

Definition 3

A non-empty subcategory \mathcal{T} of $\mathsf{D}(R)$ is *thick* if it is full, closed under taking direct summands and for every exact triangle

$$X \to Y \to Z \to \Sigma X$$

if any two of X, Y, Z belong to \mathcal{T} , so does the third.

Example 4

The subcategories $\mathsf{I}^{\mathrm{fg}}(R)$, $\mathsf{I}^{\mathrm{fl}}(R)$ and $\mathsf{perf}(R)$ are all thick.

Definition 5

Given $X \in D(R)$, the thick subcategory generated by X, denoted Thick_R(X), is the smallest thick subcategory that contains X. It is the intersection of all thick subcategories of D(R)containing X.

Example 6

Let R be a Noetherian ring. We always have $\operatorname{Thick}_{R}(R)$ are the perfect complexes. When (R, \mathfrak{m}, k) is local we have $\operatorname{Thick}_{R}(k) = \mathsf{D}^{\mathrm{fl}}_{\mathrm{b}}(R).$

Construction of $\operatorname{Thick}_R(X)$

We can construct $\operatorname{Thick}_R(X)$ as follows: Set

- (i) Thick⁰_R(X) = $\{0\}$.
- (ii) $\operatorname{Thick}_{R}^{1}(X)$ are the direct summands of finite direct sums of shifts of X.
- (iii) For each $n \ge 2$, the objects of $\operatorname{Thick}_R^n(X)$ are direct summands of objects U such that U appears in an exact triangle

$$U' \to U \to U'' \to \Sigma U'$$

where $U'' \in \operatorname{Thick}_{R}^{n-1}(X)$ and $U' \in \operatorname{Thick}_{R}^{1}(X)$.

The subcategory $\operatorname{Thick}_{R}^{n}(X)$ is the *nth thickening* of X. Every thickening embeds in the next one. We have a filtration:

$$\operatorname{Thick}^0_R(X) \subseteq \operatorname{Thick}^1_R(X) \subseteq \operatorname{Thick}^2_R(X) \subseteq \ldots \subseteq \bigcup_{n \ge 0} \operatorname{Thick}^n_R(X)$$

It turns out that

$$\operatorname{Thick}_R(X) = \bigcup_{n \ge 0} \operatorname{Thick}_R^n(X)$$

If $F: \mathsf{D}(R) \to \mathsf{D}(S)$ is an exact functor then

 $F(\operatorname{Thick}_R(X)) \subseteq \operatorname{Thick}_S(F(X)).$

For any $X \in \mathsf{D}(R)$ and any perfect complex P, the complexes $P \otimes_{R}^{\mathbf{L}} X$ and $\operatorname{RHom}_{R}(P, X)$ are in $\operatorname{Thick}_{R}(X)$.

The *support* of an R-complex X is

$$\operatorname{Supp}_R(X) \coloneqq \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid H(X)_{\mathfrak{p}} \neq 0 \}.$$

Support and Thick Subcategories

When $Y \in \operatorname{Thick}_R(X)$, we have

 $\operatorname{Supp}_R(Y) \subseteq \operatorname{Supp}_R(X).$

The converse doesn't hold in general, but it does for perfect complexes.

Hopkins' and Neeman's Theorem

Theorem 7 (Hopkins, Neeman)

Let R be a commutative Noetherian ring. Given perfect R-complexes N and M, if $\operatorname{Supp}_R N \subseteq \operatorname{Supp}_R M$ then $N \in \operatorname{Thick}_R(M)$.

Proof.

"Left as an exercise to the reader."

Hopkins-Neeman is very useful in many situations and often simplifies proofs.

For example, Let (R, \mathfrak{m}, k) be a regular local ring. Then $k \in \operatorname{Thick}_R(X)$ for every $X \in \mathsf{D}^{\mathrm{fl}}_{\mathrm{b}}(R)$ when viewed in $\mathsf{D}(R)$.

However, in characteristic 0, it is not known if $k \in \text{Thick}_R(M)$ in the module category when M has finite length.

Partial Analogue for $I^{fl}(R)$

Proposition 8

For all $X \in \mathsf{I}^{\mathrm{fl}}(R)$ with $H(X) \neq 0$, one has $\mathrm{Thick}_{R}(X) = \mathsf{I}^{\mathrm{fl}}(R)$.

Outline of proof.

It suffices to show that for all $Y \in \mathsf{I}^{\mathsf{fl}}(R)$ we have $Y \in \mathrm{Thick}_R(X)$. Take the Matlis dual Y^{\vee} , this is a perfect complex supported at $\{\mathfrak{m}\}$. By Hopkins-Neeman, $Y^{\vee} \in \mathrm{Thick}_R(X^{\vee}), \implies Y^{\vee \vee} \in \mathrm{Thick}_R(X^{\vee \vee}).$ As a corollary we get the implication $(a) \implies (b)$.

Corollary 9

If there exists $X \in \mathsf{I}^{\mathrm{fl}}(R)$ with $H(X) \neq 0$ s.t. inj-dim_R($\mathbb{R}^{\varphi} \otimes_{R}^{\boldsymbol{L}} X$) $< \infty$, then for all $Y \in \mathsf{I}^{\mathrm{fl}}(R)$ we have inj-dim_R($\mathbb{R}^{\varphi} \otimes_{R}^{\boldsymbol{L}} Y$) $< \infty$.

Proof. Since $Y \in \text{Thick}_R(X)$, we have

$$\mathbf{R}^{\varphi^{i}} \otimes_{R}^{\mathbf{L}} Y \in \operatorname{Thick}_{R}(\mathbf{R}^{\varphi^{i}} \otimes_{R}^{\mathbf{L}} X) = \mathsf{l}^{\mathrm{fl}}(R)$$

Outline of $(ii) \implies (i)$

Let $X \in \mathsf{l}^{\mathrm{fg}}(R)$ with $H(X) \neq 0$ s.t. $\operatorname{inj-dim}_{R}(\mathbb{R}^{\varphi} \otimes_{R}^{\mathbf{L}} X) < \infty$. We have a series of implications:

(a)
$$\implies$$
 there exists some $Y \in \mathsf{I}^{\mathrm{fl}}(R)$ with $H(Y) \neq 0$ s.t.
inj-dim_R($\mathbf{R}^{\varphi} \otimes_{R}^{\mathbf{L}} Y$) $< \infty$.

(b) \implies for all $Y \in \mathsf{l}^{\mathrm{fl}}(R)$ we have $\operatorname{inj-dim}_{R}(\mathsf{R}^{\varphi} \otimes_{R}^{\mathbf{L}} Y) < \infty$.

(c)
$$\implies$$
 for all $Y \in I^{\mathrm{fl}}(R)$ and for all $i > 0$ we have inj-dim_R($\mathbf{R}^{\varphi^{i}} \otimes_{R}^{\mathbf{L}} Y$) $< \infty$.

- (d) $\implies \operatorname{proj-dim}_R(Y) < \infty$.
- (e) \implies that *R* is Gorenstein.

Loewy Length

Definition 10

Let (R, \mathfrak{m}, k) be a local ring, X a complex of R modules. The *Loewy length* of X is defined to be

$$\ell\ell_R(X) \coloneqq \inf\{i \in \mathbb{N} \mid \mathfrak{m}^i \cdot X = 0\}$$

The homotopical Loewy length of X is defined to be

$$\ell\ell_{\mathsf{D}(R)}(X) \coloneqq \inf\{\ell\ell_R(V) \mid V \simeq X\}$$

Finiteness Property

Theorem 11 (Avramov, Iyengar, Miller) Let (R, \mathfrak{m}, k) be a local ring. Let K^R be the Koszul complex on a minimal generating set of \mathfrak{m} . For any complex X we have

 $\ell \ell_{\mathsf{D}(R)}(K^R \otimes_R^{\mathbf{L}} X) \le \ell \ell_{\mathsf{D}(R)}(K^R) < \infty$

Proposition 12

Let $\varphi \colon (R, \mathfrak{m}, k) \to (S, \mathfrak{n}, l)$ be a local homomorphism such that $\varphi(\mathfrak{m}) \subseteq \mathfrak{n}^c$ where $c = \ell \ell_{\mathsf{D}(S)}(K^S)$. For any $X \in \mathsf{D}^{\mathrm{fg}}_+(R)$ we have $\operatorname{Tor}_i^R(S, X) = 0$ for all $i \gg 0$ if and only if X has finite projective dimension.

Proof of Proposition.

The if part is clear. For the converse, note

$$\sup H(S \otimes_R^{\mathbf{L}} X) < \infty \implies \sup H(K^S \otimes_R^{\mathbf{L}} X) < \infty.$$

The complex $K^S \simeq H(K^S)$ in $\mathsf{D}(R)$. Since $H(K^S)$ has a *k*-vector space structure as an *R* complex, one gets by the Künneth formula

$$H(K^S \otimes_R^{\mathbf{L}} X) \cong H(K^S) \otimes_k H(k \otimes_R^{\mathbf{L}} X)$$

Since $H(K^S \otimes_R^{\mathbf{L}} X)$ is bounded, so is $H(k \otimes_R^{\mathbf{L}} X)$. Therefore proj-dim_R(X) < ∞ .

Remark

If $\varphi \colon R \to R$ is a contracting endomorphism, then for i large enough $\varphi^i(\mathfrak{m}) \subseteq \mathfrak{m}^c$ where $c = \ell \ell_{\mathsf{D}(R)}(K^R)$. Hence the complex $\mathbb{R}^{\varphi^i} \otimes_R^{\mathbf{L}} X$ has bounded homology for all $i \gg 0$ if and only if proj-dim_R(X) < ∞ .

Outline of $(ii) \implies (i)$

Let $X \in \mathsf{l}^{\mathrm{fg}}(R)$ with $H(X) \neq 0$ s.t. $\operatorname{inj-dim}_{R}(\mathbb{R}^{\varphi} \otimes_{R}^{\mathbf{L}} X) < \infty$. We have a series of implications:

(a)
$$\implies$$
 there exists some $Y \in \mathsf{I}^{\mathrm{fl}}(R)$ with $H(Y) \neq 0$ s.t.
inj-dim_R($\mathbf{R}^{\varphi} \otimes_{R}^{\mathbf{L}} Y$) $< \infty$.

(b) \implies for all $Y \in \mathsf{l}^{\mathrm{fl}}(R)$ we have $\operatorname{inj-dim}_{R}(\mathsf{R}^{\varphi} \otimes_{R}^{\mathbf{L}} Y) < \infty$.

(c)
$$\implies$$
 for all $Y \in I^{\mathrm{fl}}(R)$ and for all $i > 0$ we have inj-dim_R($\mathbf{R}^{\varphi^{i}} \otimes_{R}^{\mathbf{L}} Y$) $< \infty$.

- (d) $\implies \operatorname{proj-dim}_R(Y) < \infty$.
- (e) \implies that *R* is Gorenstein.

Finite injective dimension is needed

Example 13

Let $R = k[x, y]/(x^3, y^3)$ with $\varphi(x) = y$ and $\varphi(y) = y^2$. Let X be the complex

$$\dots \to R \xrightarrow{x^2} R \xrightarrow{x} R \xrightarrow{x^2} R \xrightarrow{x} R \to 0$$

it's easy to see that $X \simeq R/(x)$ and $\mathbb{R}^{\varphi} \otimes^{\mathbf{L}} X \simeq R/(y)$. However $\mathbb{R}^{\varphi^2} \otimes^{\mathbf{L}} X$ is not homologically bounded.

Questions?