Stable Harbourne–Huneke Containment and Bounds on Waldchmidt Constant

Sankhaneel Bisui¹

With Eloísa Grifo 2, Huy Tài Hà 1, and Thái Thành Nguyễn 1

¹Department of Mathematics Tulane University

²Department of Mathematics University of Nebraska-Lincoln

Commutative and Homological Algebra Market Presentations, 02/09/21

Motivation: Polynomial Interpolation Problem

- Polynomials in one variable are completely determined by its zeros.
- General: Given s distinct points $\mathscr{X} = \{x_1, \ldots, x_s\}$ in the affine line $\mathbb{A}^1_{\mathbb{C}}$, a polynomial of degree d, where $d + 1 = \sum m_i$

$$f(x) = a_0 + a_1 x + \dots + a_d x^d$$

vanishing on \mathscr{X} with multiplicity m_1, \ldots, m_s respectively, can be uniquely determined with the following vanishing condition of the derivatives

$$f^{(j)}(x_i) = 0$$
 for $i = 1, ..., s$ and $j = 0, ..., m_i - 1$.

• You may know this by Hermit Interpolation

Motivation: Polynomial Interpolation Problem

• What happens with polynomial with several variable or in higher dimensions?

•
$$\mathbb{K} = \mathbb{C}$$
, $\mathbb{P}^{N}_{\mathbb{C}} = \mathbb{P}^{N}$, $m_1, \dots, m_s \in \mathbb{N}$, $\mathbb{X} = \{P_1, \dots, P_s\} \subset \mathbb{P}^{N}$

Polynomial Interpolation Problem

Given $\mathbb{X} = \{P_1, \ldots, P_s\} \subset \mathbb{P}^N$ and positive integers m_1, \ldots, m_s .

$$\mathscr{L}_{\mathbb{X},m_i} = \left\{ \text{homogeneous polynomials vanishing on } \mathbb{X} \\ \text{with multiplicities } m_1, \dots, m_s \right\} \subset \mathbb{C}[x_0, \dots, x_N]$$

- **1** $\mathscr{L}_{\mathbb{X},m_i}$ is an algebraic object connecting geometric properties of \mathbb{X} .
- ② What is the minimal $d \in \mathbb{N}$ such that $\mathscr{L}_{\mathbb{X},m_i}$ has a polynomial of degree d?
- So Fix any $d \in \mathbb{N}$. What is $\dim_{\mathbb{C}} \{ f \in \mathscr{L}_{\mathbb{X},m_i} | \deg(f) = d \}$?

Our Focus: Equi-multiplicity & Nagata's Question

- Equi-multiplicity: $m_1 = \cdots = m_s = m$
- What is the minimal $d \in \mathbb{N}$ such that $\mathscr{L}_{\mathbb{X},m}$ has a polynomial of degree d?
- Small Note: Hyper-surfaces are defined by homogeneous polynomials.

Question 1.1 (Nagata'65)

Take a set of points $\mathbb{X} = \{P_1, \dots, P_s\} \subset \mathbb{P}^2_{\mathbb{C}}$. What is the minimal degree $\alpha_t(\mathbb{X})$ of a hypersurface that passes through the points with multiplicity at least t?

Goal: To study lower bounds of $\alpha_t(\mathbb{X})$.

Conjectural Bounds

Conjecture 1.1 (Nagata)

Let \mathbb{X} be a general set of s points in \mathbb{P}^2 , then

$$\frac{\alpha_t(\mathbb{X})}{t} \geqslant \sqrt{s}$$

Conjecture 1.2 (Chudnovsky and Demailly)

If $X = \{P_1, \dots, P_s\} \subset \mathbb{P}^N_{\mathbb{C}}$, and m, t be positive integers then • (Chudnovsky)

$$rac{lpha_t(\mathbb{X})}{t} \geq rac{lpha(\mathbb{X})+N-1}{N}, \ orall t \geq 1, \ lpha(\mathbb{X})=lpha_1(\mathbb{X}).$$

• (Demailly)
$$rac{lpha_t(X)}{t} \geq rac{lpha_m(X)+N-1}{m+N-1}, \; orall m, \; t \geq 1.$$

Definition 1.1 (Powers of ideals)

Let I is an ideal in $\mathbb{K}[x_0,\ldots,x_N]$,

- Symbolic Powers: $I^{(t)} = \bigcap_{\mathfrak{p} \in Ass(I)} (I^t S_{\mathfrak{p}} \cap S).$
- Differential: $I^{\langle t \rangle} = \{ f \in S : \partial_{\underline{\alpha}}(f) \in I \text{ for } |\underline{\alpha}| < t \}, \partial \equiv "partial".$

Theorem 1.2 (Zariski-Nagata 1949-62)

Let $S = \mathbb{K}[x_0, \dots, x_N]$ where \mathbb{K} be a perfect field and let, I is a radical ideal then $I^{(t)} = I^{\langle t \rangle}$ for all $t \ge 1$.

Fat Points in \mathbb{P}^N

 $\mathbb{X} = \{P_1, \dots, P_s\}, \ \mathbb{Y} = m_1 P_1 + \dots + m_s P_s (\text{fat points}), \ \mathfrak{p}_i \text{ ideal defining } P_i.$ Then, $I_{\mathbb{X}}^{(m)} = \mathfrak{p}_1^m \cap \dots \cap \mathfrak{p}_s^m = \mathscr{L}_{\mathbb{X},m} \text{ and } I_{\mathbb{Y}} = \mathfrak{p}_1^{m_1} \cap \dots \cap \mathfrak{p}_s^{m_s} = \mathscr{L}_{\mathbb{X},m_i}$

イロト イロト イヨト 一日

Waldschmidt Constant

So, $\alpha_t(\mathbb{X}) = \alpha(I_{\mathbb{X}}^{(t)})$ [by Zariski-Nagata], where, $\alpha(I_{\mathbb{X}}^{(t)}) \equiv$ the initial degree of $I_{\mathbb{X}}^{(t)}$, $I_{\mathbb{X}}$ is the ideal defining \mathbb{X} .

Subadditivity of $\alpha(I^{(t)})$

$$\begin{split} I^{(a)}I^{(b)} &\subset I^{(a+b)} \text{ implying } \alpha(I^{(a)}) + \alpha(I^{(b)}) \geq \alpha(I^{(a+b)}) \implies \{\alpha(I^{(t)})\} \text{ is sub-additive for any ideal } I. \end{split}$$

Definition 1.3 (Waldschmidt Constant)

Hence, by Fekete's lemma,

$$\widehat{\alpha}(I) = \lim_{t \to \infty} \frac{\alpha(I^{(t)})}{t} = \inf \frac{\alpha(I^{(t)})}{t}$$

is well defined.

Conjecture 1.3 (Nagata's)

If \mathbb{X} be any set of s general points in \mathbb{P}^2 , and $I_{\mathbb{X}}$ be the defining ideal then for all $t \ge 1$,

$$rac{lpha(I^{(t)}_{\mathbb{X}})}{t} \geq \sqrt{s}.$$
 That is, $\widehat{lpha}(I_{\mathbb{X}}) \geq \sqrt{s}$

Conjecture 1.4 (Chudnovsky's Equivalent form)

Let I_X be the defining ideal of a finite set of points $X \subset \mathbb{P}^N$, then, • (Chudnovsky)

$$\widehat{lpha}(I_{\mathbb{X}}) \geq rac{lpha(I_{\mathbb{X}}) + N - 1}{N}$$

• (Demailly)

$$\widehat{\alpha}(I_{\mathbb{X}}) \geq \frac{\alpha(I_{\mathbb{X}}^{(m)}) + N - 1}{m + N - 1}. \ \forall m \geq 1$$

Results: Chudnovsky's Conjecture

Previous and New

- Any finite set of points in $\mathbb{P}^2_{\mathbb{C}}$ by Chudnovsky'81 also by Harbourne and Huneke'13.
- Any finite set of general points in P³_K and a finite set of at most N+1 general points in P^N_K by Dumnicki 2012.
- Any set of binomial number of points in
 ^N_K forming a star configuration by Bocci and Harbourne 2010.
- Any set of more than 2^N very general points in P^N_K by Dumnicki and Tutaj-Gasińska 2016.
- Any finite set of very general points in $\mathbb{P}^N_{\mathbb{K}}$ by Fouli, Mantero and Xie 2016.
- At least 4^N many general points in $\mathbb{P}^N_{\mathbb{C}}$ (-, Grifo, Hà, Nguyễn 2020)

A 目 > A 目 > A

Previous and New

- Esnault and Viehweg, 1983, proved, for points in $\mathbb{P}^{N}_{\mathbb{C}}$.
- Malara, Szemberg and Szpond 2018 proved for a fixed integer m, Demailly's Conjecture holds for s number of very general points in $\mathbb{P}_{\mathbb{K}}^{N}$, where $\lfloor \sqrt[N]{s} \rfloor \ge m+1$.
- Extended by Chang and Jow 2020, showed that for a fixed integer m, Demailly's Conjecture holds for s number of very general point $\mathbb{P}_{\mathbb{K}}^{N}$, where $\lfloor \sqrt[N]{s} \rfloor 2 \ge \frac{2\varepsilon}{N-1}(m-1)$, $0 \le \varepsilon < 1$.
- At least $(2m+2)^N$ many general points in $\mathbb{P}^N_{\mathbb{C}}$ (-, Grifo, Hà, Nguyễn 2020)

Points in \mathbb{P}^{N}

•
$$\mathbb{X} = \{P_1, \dots, P_s\}$$
, where

$$P_{1} = [a_{10} : a_{11} : \dots : a_{1N}]$$
$$P_{2} = [a_{20} : a_{21} : \dots : a_{2N}]$$
$$\dots$$
$$P_{s} = [a_{s0} : a_{s1} : \dots : a_{sN}]$$

 $\bullet~\mathbb{X}$ is associated the matrix

$$\begin{bmatrix} a_{10} & a_{11} & \dots & a_{1N} \\ a_{20} & a_{21} & \dots & a_{2N} \\ \dots & \dots & \dots & \dots \\ a_{s0} & a_{s1} & \dots & a_{sN} \end{bmatrix} \in \mathbb{A}^{s(N+1)}, \text{ and } \begin{bmatrix} z_{10} & z_{11} & \dots & z_{1N} \\ z_{20} & z_{21} & \dots & z_{2N} \\ \dots & \dots & \dots & \dots \\ z_{s0} & z_{s1} & \dots & z_{sN} \end{bmatrix}$$

CHAMP-2021 11 / 34

3

Generic Points

- Let $z = (z_{ij})_{1 \leqslant i \leqslant s, 0 \leqslant j \leqslant N}$ be s(N+1) new indeterminates.
- \bullet Let $\mathbb{K}(z)$ be the transcendental extension of $\mathbb{K}.$
- For $i = 1, \ldots, s$, set $P_i(z) = [z_{i0} : \cdots : z_{iN}] \in \mathbb{P}^N_{\mathbb{K}(z)}$

Definition 1.4

The set $\mathbb{X}(z) = \{P_1(z), \dots, P_s(z)\}$ is referred to as the set of *s* generic points in $\mathbb{P}^N_{\mathbb{K}(z)}$.

Remark 1.1

Let $a = (a_{ij})_{1 \leq i \leq s, 0 \leq j \leq N} \in \mathbb{A}^{s(N+1)}$. By replacing z with $a(z_{ij} \leftrightarrow a_{ij})$, we can find an open dense subset $W \subset \mathbb{A}^{s(N+1)}$ such that $\mathbb{X}(a) = \{P_1(a), \dots, P_s(a)\}$ is set of distinct s points in \mathbb{P}^N for $a \in W$.

By Fouli-Mantero-Xie:

A property ${\mathscr P}$ is said to hold for	
Very General set of <i>s</i> Points if	General set of <i>s</i> Points if
there exists infinite intersection of open sets $W = \bigcap_{i=1}^{\infty} W_i \subseteq \mathbb{A}_{\mathbb{K}}^{s(N+1)}$ such that the property \mathscr{P} holds for $\mathbb{X}(a)$ whenever $a \in W$.	there exists open $W \subseteq \mathbb{A}^{s(N+1)}_{\mathbb{K}}$ such that the property \mathscr{P} holds for $\mathbb{X}(a)$ whenever $a \in W$.

CHAMP-2021 13/34

Theorem 2.1 (Ein-Lazarsfeld-Smith'01, Hochster-Huneke'02, and Ma-Schwede'17)

For a radical ideal I of bigheight h in a regular ring S, one has

 $I^{(hr)} \subseteq I^r$

for all $r \in \mathbb{N}$, which implies: $\widehat{\alpha}(I) \geq \frac{\alpha(I)}{h}$

Conjecture 2.1 (Harbourne'09)

For a radical ideal I of bigheight h in a regular ring S,

 $I^{(hr-h+1)} \subseteq I^r \ \forall r \geq 1.$

$$I^{(hr-h+1)} \subseteq I^r \ \forall r \geq 1.$$

Conjecture 2.2 ([Harbourne-Huneke'13)

J Let $R = \mathbb{K}[\mathbb{P}_{\mathbb{K}}^{N}]$, $I \subset R$, homogeneous radical with bigheight = h, and $\mathfrak{m} = \langle x_0, \dots, x_N \rangle$. Then for $r \ge 1$ ● $I^{(hr)} \subseteq \mathfrak{m}^{r(h-1)}I^r$, and ● $I^{(r(m+h-1))} \subseteq \mathfrak{m}^{r(h-1)}(I^{(m)})^r$.

Points – Our focus

To study these containment for ideals defining points in $\mathbb{P}^{N}_{\mathbb{K}}$.

If $I \subset \mathbb{K}[\mathbb{P}^N_{\mathbb{K}}]$ is an ideal defining points, then the bigheight h = N.

Lemma

The Harbourne-Huneke containment implies Chudnovsky's conjecture and Demailly's conjecture.

Chudnovsky's Conjecture

Let $I \subset \mathbb{K}[\mathbb{P}^N_{\mathbb{K}}]$ defines an ideal defining a set of points in $\mathbb{P}^N_{\mathbb{K}}$

Now,
$$I^{(Nr)} \subseteq \mathfrak{m}^{r(N-1)}I^r \implies \alpha(I^{(Nr)}) \ge r(\alpha(I) + N - 1)$$

$$\implies \frac{\alpha(I^{(Nr)})}{Nr} \ge \frac{\alpha(I) + N - 1}{N}$$

Taking limit as $r \to \infty$, we get $\widehat{\alpha}(I) \ge \frac{\alpha(I) + N - 1}{N}$

Similarly, $I^{(r(m+h-1))} \subseteq \mathfrak{m}^{r(h-1)}(I^{(m)})^r$ implies Demailly's conjecture.

Stable Containment

Remark 2.1

- Counter examples to Harbourne's conjecture exits (Dumniscki, Sxemberg and Tutaj-Gasinska'13; Harbourne Seceleanu'15).
- Oue to the limiting scenario, we can take ∀r ≫ 0 and concentrate on stable containment.

Conjecture 2.3 (Stable Containment)

Let $R = \mathbb{K}[\mathbb{P}_{\mathbb{K}}^{N}]$, $I \subset R$, homogeneous radical with bigheight = h, and $\mathfrak{m} = \langle x_{0}, ..., x_{N} \rangle$. Then $I^{(hr-h+1)} \subseteq I^{r}$, for $r \gg 0$ [Stable Harbourne] $I^{(hr)} \subseteq \mathfrak{m}^{r(h-1)}I^{r}$, for $r \gg 0$ [Stable Harbourne-Huneke] $I^{(r(m+h-1))} \subseteq \mathfrak{m}^{r(h-1)}(I^{(m)})^{r}$, where r = ct for some fix $c \in \mathbb{N}$ and for all $t \in \mathbb{N}$. (weaker stable HH)

3

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Results: Containment and Stable Containment

- Tohaneanu, and Xie'19 proved stable Harbourne containment $I^{(Nr-N+1)} \subset I^r$ for very general set of points in \mathbb{P}^N .
- Harbourne, and Huneke'13 proved *I*^(Nr) ⊂ *I^r*m^{r(N-1)} for ideals defining any number of general points in plane, meaning *N* = 2.
- Dumnicki and Tutaj-Gasińka'16 proved Harbourne-Huneke containment I^(Nr) ⊂ I^rm^{r(N-1)} for ideals defining s ≥ 2^N, N ≥ 3 many very general points.
- Bocci, Cooper, and Harbourne'14 proved
 I^{(r(m+N-1))} ⊆ m^{r(N-1)}(I^(m))^r for ideals defining s² many general points in projective plane.

Results

Theorem 2.2 (-, Grifo, Hà, Nguyễn)

- The stable Harbourne conjecture holds for the ideal defining a general set of points in ℙ^N.
- **2** The stable Harbourne-Huneke conjecture

$$I^{(Nr)} \subseteq \mathfrak{m}^{r(N-1)}I^r$$

holds for the ideal defining at least 4^N general set of points in \mathbb{P}^N .

The Harbourne-Huneke containment

$$I^{(r(m+N-1))} \subseteq \mathfrak{m}^{r(N-1)}(I^{(m)})^r$$

holds for r = ct, where $c \in \mathbb{N}$ is fixed and $t \in \mathbb{N}$, for the ideal defining at least $(2m+2)^N$ many general points in \mathbb{P}^N .

Definition 2.3 (Krull)

Let x represent the coordinates x_0, \ldots, x_N of $\mathbb{P}^N_{\mathbb{K}}$, and $z = (z_{ij})_{1 \leq i \leq s, 0 \leq j \leq N}$. Let $a \in \mathbb{A}^{s(N+1)}$. The *specialization* at a is a map π_a from the set of ideals in $\mathbb{K}(z)[x]$ to the set of ideals in $\mathbb{K}[x]$, defined by

$$\pi_{\mathsf{a}}(I) := \{f(\mathsf{a},\mathsf{x}) \mid f(\mathsf{z},\mathsf{x}) \in I \cap \mathbb{K}[\mathsf{z},\mathsf{x}]\}.$$

Example 2.4

Consider the ideal I = (x, y) = (x, x + uy) in $\mathbb{K}(u)[x, y]$. Then the specialization $\pi_0(I) = (x, y) \neq (x, x + 0y) = (x)$ in $\mathbb{K}[x, y]$.

Theorem 2.5 (Krull)

Let I, J be ideals of $\mathbb{K}(z)[x]$.

- If $I = (f_1(z,x), \ldots, f_l(z,x))$. Then there exists an open dense subset $W \subset \mathbb{A}^{s(N+1)}_{\mathbb{K}}$ such that for all $a \in W$, $\pi_a(I) = (f_1(a,x), \ldots, f_l(a,x))$.
- 2 There exists an open dense subset $U \subset \mathbb{A}^{s(N+1)}$ such that for all $a \in U$,

$$\pi_{\mathsf{a}}(I \cap J) = \pi_{\mathsf{a}}(I) \cap \pi_{\mathsf{a}}(J)$$
 and $\pi_{\mathsf{a}}(IJ) = \pi_{\mathsf{a}}(I)\pi_{\mathsf{a}}(J)$

Example 2.6

 Let *I* = (x₁), and *J* = (x₁ + zx₂) be ideal in K(z)[x₁, x₂]. Then the computations shows that, π₀(*I* ∩ *J*) = (x₁²) ⊊ π₀(*I*) ∩ π₀(*J*) = (x₁)
 Let *I* = (x₁, x₂ + zx₃) and *J* = (x₁, x₂) be ideals in K(z)[x₁, x₂, x₃]; *IJ* = (x₁², x₁x₂, x₁x₃, x₂² + zx₂x₃); Now,
 (*I*) = (x₁²) ≤ (x₁) ≤ (

$$\pi_0(I).\pi_0(J) = (x_1, x_2)^2 \subsetneq \pi_0(I.J) = (x_1^2, x_1x_2, x_2^2, x_1x_3).$$

Observation

• Let $\mathfrak{p}_i(z)$ and $\mathfrak{p}_i(a)$ be the defining ideals of $P_i(z) \in \mathbb{P}^N_{\mathbb{K}(z)}$ and $P_i(a) \in \mathbb{P}^N_{\mathbb{K}}$, respectively. Then there exists an open dense subset $W \subseteq W_0 \subseteq \mathbb{A}^{s(N+1)}$ such that, for all $a \in W$ and any $1 \leq i \leq s$, we have

$$\pi_{\mathsf{a}}(\mathfrak{p}_i(\mathsf{z})) = \mathfrak{p}_i(\mathsf{a}).$$

• Let I(z) and I(a) be defining ideal of $\mathbb{X}(z)$ and $\mathbb{X}(a)$ respectively. For fixed $m, r, t \in \mathbb{N}$, there exists an open dense subset $U_{m,r,t} \subseteq W$ such that for all $a \in U_{m,r,t}$, we have

$$\pi_{\mathsf{a}}\left(I(\mathsf{z})^{(m)}\right) = I(\mathsf{a})^{(m)} \text{ and } \pi_{\mathsf{a}}\left(\mathfrak{m}_{\mathsf{z}}^{t}I(\mathsf{z})^{r}\right) = \mathfrak{m}^{t}I(\mathsf{a})^{r}.$$

Theorem 2.7 (Fouli, Mantero, and Xie'18)

$$\frac{\alpha(I_{\mathbb{X}(z)}^{(m)})}{m} \ge \frac{\alpha(I_{\mathbb{X}(z)} + N - 1)}{N} \implies \frac{\alpha(I_{\mathbb{X}(a)}^{(m)})}{m} \ge \frac{\alpha(I_{\mathbb{X}(a)} + N - 1)}{N}$$

$$\forall a \in \cap_{m \in \mathbb{N}} U_m. \text{ In other words Chudnovsky's conjecture holds for a very general set of points}$$

Theorem 2.8 (Grifo'18)

If $I^{(hc-h)} \subseteq I^c$ for some constant $c \in \mathbb{N}$ then for all $r \gg 0$, we have

 $I^{(hr-h)} \subseteq I^r$.

More concretely, this containment holds for all $r \ge hc$.

The Bridge: One Containment gives Stable Containment

Theorem 2.9 (–, Grifo, Ha, Nguyễn'20)

Let $I \subseteq \mathbb{K}[\mathbb{P}^N_{\mathbb{K}}]$ be a radical ideal of bigheight h. Let $b \in \mathbb{Z}$. Suppose that for some value $c \in \mathbb{N}$, $I^{(hc-h)} \subset \mathfrak{m}^{c(h-b)}I^{c}$ then for all $r \gg 0$, we have

 $I^{(hr-h)} \subset \mathfrak{m}^{r(h-b)}I^r$

<u> Theorem 2.10 (–, Grifo, Ha, Nguyễn'20)</u>

Suppose that for some constant $c \in \mathbb{N}$, we have

$$I^{(c(h+m-1)-h+1)} \subseteq \mathfrak{m}^{c(h-1)} \left(I^{(m)}\right)^{c}$$

Then for all $t \in \mathbb{N}$.

$$I^{(ct(m+h-1))} \subseteq \mathfrak{m}^{ct(h-1)}(I^{(m)})^{ct}$$

Sankhaneel Bisui (Tulane University)

Example 2.11

Let, $I = (x(y^n - z^n), y(z^n - x^n), z(x^n - y^n))$ in $\mathbb{K}[x, y, z]$ where $char \mathbb{K} \neq 2$ containing $n \ge 3$ distinct *n*-th roots of unity; These ideals fail $I^{(3)} \subseteq I^2$. [by Harbourne-Seceleanu'15, also by Dumnicki-Szemberg-Tutaj-Gasińska'13]

But, we can establish the stable Harbourne–Huneke containment for these ideals :

- We prove, $I^{(10)} \subseteq \mathfrak{m}^6 I^6$ i.e, $I^{(2 \cdot 6 2)} \subseteq \mathfrak{m}^6 I^6$.
- By Theorem 2.9, $I^{(2r-2)} \subseteq \mathfrak{m}^r I^r, r \gg 0$

• So,
$$I^{(2r-1)} \subseteq \mathfrak{m}^{r-1}I^r$$
 for $r \gg 0$, and

•
$$I^{(2r)} \subseteq \mathfrak{m}^r I^r$$
 for $r \gg 0$.

Example 2.12

Fig. 1. A configuration of 12 lines with 19 triple points.

Let *I* be the defining ideal of the Böröczky configuration B_{12} of 19 triple points in \mathbb{P}^2 ,

- Prove $I^{(8)} \subseteq \mathfrak{m}^7 I^5$ i.e., $I^{(2\cdot 5-2)} \subseteq \mathfrak{m}^7 I^5$
- By Theorem 2.9, $I^{(2r-2)} \subseteq \mathfrak{m}^r I^r, r \gg 0$
- $I^{(2r-1)} \subseteq \mathfrak{m}^{r-1}I^r$ for $r \gg 0$, and
- $I^{(2r)} \subseteq \mathfrak{m}^r I^r$ for $r \gg 0$.

Result For General Points: Stable Containment & Chudnovsky

Theorem 2.13 (-, Grifo, Ha, Nguyễn'20)

Suppose that char $\mathbb{K} = 0$, $N \ge 3$ and I defines the ideal for a general set of *s* points in $\mathbb{P}^N_{\mathbb{K}}$. If $s \ge 4^N$ then the stable containment $I^{(Nr)} \subseteq \mathfrak{m}^{r(N-1)}I^r$, holds for $r \gg 0$.

Consequence of the above theorem:

Theorem 2.14 (-, Grifo, Ha, Nguyễn'20)

Suppose char $\mathbb{K} = 0, N \ge 3$, then Chudnovsky's Conjecture holds for a general set of $s \ge 4^N$ points in $\mathbb{P}^N_{\mathbb{K}}$, that is,

$$\hat{\alpha}(I) \geq \frac{\alpha(I) + N - 1}{N}$$

Theorem 2.15 (Bisui-Grifo-Ha-Nguyễn)

Suppose that $N \ge 3$, $k \ge 2m+2$, and $k^N \le s < (k+1)^N$. Let I be the defining ideal of s general points in $\mathbb{P}^N_{\mathbb{K}}$, where char $\mathbb{K} = 0$. We have

$$I^{(c(m+N-1)-N+1)} \subseteq (I^{(m)})^c \mathfrak{m}^{c(N-1)}$$

for some $c \in \mathbb{N}$.

As a consequence of the Theorem we get

Theorem 2.16 (Bisui-Grifo-Ha-Nguyễn)

With the same set up as in Theorem 2.15

$$\widehat{\alpha}(I) \ge \frac{\alpha(I^{(m)}) + N - 1}{m + N - 1}$$

< 4 ₽ > <

Outline of the proof: Chudnovsky's Conjecture

• Prove for $s \ge 4^N$ the ideal I(z) of s generic points there is a $c \in \mathbb{N}$ such that

$$I(z)^{(cN-N)} \subset \mathfrak{m}^{r(N-1)}I(z)^{c}$$

2 So there is an open set W in $\mathbb{A}^{s(N+1)}$ where

$$\pi_{\mathsf{a}}\left(I(\mathsf{z})^{(cN-N)}\right) \subset \mathfrak{m}^{r(N-1)}\pi_{\mathsf{a}}\left(I(\mathsf{z})^{c}\right)$$

Containment for general set of points i.e,

$$I(\mathsf{a})^{(Nc-N)} \subseteq \mathfrak{m}^{c(N-1)}I(\mathsf{a})^c, \ \mathsf{a} \in W$$

3 Apply Theorem 2.9: For all the points in the open set W we have,

$$I(a)^{(Nr-N)} \subseteq \mathfrak{m}^{r(N-1)}I(a)^r$$
, for all $r \gg 0$

Get,

$$\widehat{lpha}(I(\mathsf{a})) \geqslant rac{lpha(I(\mathsf{a})) + N - 1}{N}$$

Outline of the proof: Demailly's Conjecture

Prove for s ≥ (2m+2)^N the ideal I(z) of s generic points there is a c ∈ N such that

$$I(\mathsf{z})^{(c(m+N-1)-N+1)} \subset \mathfrak{m}^{r(N-1)}(I(\mathsf{z})^{(m)})^c$$

2 So there is an open set W in $\mathbb{A}^{s(N+1)}$ where

$$\pi_{\mathsf{a}}\left(I(\mathsf{z})^{(c(m+N-1)-N+1)}\right) \subset \mathfrak{m}^{r(N-1)}\pi_{\mathsf{a}}\left((I(\mathsf{z})^{(m)})^{c}\right)$$

i.e,

$$I(\mathsf{a})^{(c(m+N-1)-N+1)} \subseteq \mathfrak{m}^{c(N-1)}(I(\mathsf{z})^{(m)})^c, \; \mathsf{a} \in W$$

(a)) Apply Theorem 2.15: For all the points in the open set W we have, $I(a))^{(ct(m+h-1))} \subseteq \mathfrak{m}^{ct(h-1)}(I(a)^{(m)})^{ct}$, for all $t \in \mathbb{N}$

Get,

$$\widehat{\alpha}(I(\mathsf{a})) \geqslant \frac{\alpha(I(\mathsf{a})^{(m)}) + N - 1}{m + N - 1}$$

Definition 2.17 (Star-Configuration of Co-dim h)

Let $\mathscr{H} = \{H_1, \ldots, H_n\}$ be a collection of $s \ge 1$ hypersurfaces in $\mathbb{P}_{\mathbb{K}}^N$. Assume that these hypersurfaces *meet properly*; that is, the intersection of any k of these hypersurfaces either is empty or has codimension k.

$$\mathbb{V}_{h,\mathscr{H}} = \bigcup_{1 \leq i_1 < \cdots < i_h \leq n} H_{i_1} \cap \cdots \cap H_{i_h}, 1 \leq h \leq N$$

We call $\mathbb{V}_{h,\mathscr{H}}$ a codimension h star configuration.

Let 𝒴 = {F₁,...,F_n} denotes the forms defining the hyper-planes the defining ideal of 𝒱_{h,𝔅} is given by

$$I_{h,\mathscr{F}} = \bigcap_{1 \leqslant i_1 < \cdots < i_h \leqslant n} (F_{i_1}, \ldots, F_{i_h}).$$

• (-, Grifo, Ha, Nguyễn'20) $I_{h,\mathscr{F}}^{(r(m+h-1)-h+c)} \subseteq \mathfrak{m}^{(r-1)(h-1)+c-1}(I_{h,\mathscr{F}}^{(m)})^r.$

Determinantal Rings

- For fixed positive integers $t \leq \min\{p,q\}$,
- Let X be a $p \times q$ matrix of indeterminates, let $R = \mathbb{K}[X]$,
- let $I = I_t(X)$ denote the ideal of *t*-minors of *X*.
- Let h = (p t + 1)(q t + 1) be the height of I in R.
- (-, Grifo, Ha, Nguyễn'20) For all $m, r \ge 1$, we have

$$I^{(r(h+m-1))} \subseteq \mathfrak{m}^{r(h-1)} \left(I^{(m)}\right)^r$$
.

• Demailly like bound holds for determinantal ideals,

$$\widehat{\alpha}(I) \geq \frac{\alpha(I^{(m)})+h-1}{m+h-1}.$$

Future Directions

- What happens with the conjectures (Chudnovsky and Harbourne-Huneke) for smaller number of points in P^N?
- Containment of ideals arising from different set up eg. combinatorial, or tropical, or different configurations, or arrangements.
- Demailly's Conjecture generalizes Chudnovsky.
- Fix any $d \in \mathbb{N}$. What is $\dim_{\mathbb{C}} \{ f \in \mathscr{L}_{\mathbb{X},m_i} | \deg(f) = d \}$? Let, $\mathbb{X} = \{ P_1, \dots, P_s \}$ and $I_{\mathbb{X}} = \mathfrak{p}_1 \cap \dots \cap \rho_s$, $\mathbb{Y} = m_1 P_1 + \dots + m_s P_s \leftrightarrow I_{\mathbb{Y}} = \mathfrak{p}_1^{m_1} \cap \dots \cap \rho_s^{m_s}$ (By Zariski-Nagata).

Question 2.1 (Hilbert Functions)

$$\mathscr{H}(I_{\mathbb{Y}}) = \dim_{\mathbb{C}}[I_{\mathbb{Y}}]_d = ?$$

$$\mathscr{H}_{\mathbb{Y}}(d) = \dim_{\mathbb{C}}[\mathbb{C}[X_0,\ldots,X_N]/I_{\mathbb{Y}}]_d =?$$

The SHGH conjecture predicts for maximal Hilbert Function

Thank you

3

Image: A matrix