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Problem

Problem
Investigate the connection between algebraic properties and
invariant of a graded family of ideals, and geometric properties
and invariant of an associated convex body.

Question
For a graded family of monomial ideals, use combinatorial data
of convex bodies to understand :

1 Noetherian property of the Rees algebra.
2 Analytic spread, symbolic generation type and standard

Veronese degree.
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Rees Algebra and Newton-Okounkov body

Notation and Terminology :
1 k is a field, R = k[x1, . . . , xn], and m = (x1, . . . , xn).
2 I = {Ik}k∈N is a graded family of ideals in R if, for all

p,q ∈ N, IpIq ⊆ Ip+q.

Definition
Let I = {Ik}k∈N be a graded family of monomial ideals in R.

1 The Rees algebra of I :

R(I) := R ⊕ I1t ⊕ I2t2 ⊕ · · · ⊆ R[t ].

2 The Newton-Okounkov body of I is defined to be

∆(I) =
⋃
k∈N

{a
k
∣∣ xa ∈ Ik

}
⊆ Rn.
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Newton-Okounkov body

Definition
Let I = {Ik}k∈N be a graded family of monomial ideals in R.
The Newton-Okounkov body of I is defined to be

∆(I) :=
⋃
k∈N

{a
k

∣∣∣xa ∈ Ik
}
⊆ Rn.

The term Newton-Okounkov was dedicated to Okounkov’s
pioneering work (1996–2003).
Systematically developed by Lazarsfeld and Mustaţǎ
(2009), and by Kaveh and Khovanskii (2012–2014).
Usually defined for a graded algebra of integral type or a
graded family of m-primary ideals.
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(2009), and by Kaveh and Khovanskii (2012–2014).
Usually defined for a graded algebra of integral type or a
graded family of m-primary ideals.

4 / 23



Newton-Okounkov body

Definition
Let I = {Ik}k∈N be a graded family of monomial ideals in R.
The Newton-Okounkov body of I is defined to be

∆(I) :=
⋃
k∈N

{a
k

∣∣∣xa ∈ Ik
}
⊆ Rn.

The term Newton-Okounkov was dedicated to Okounkov’s
pioneering work (1996–2003).
Systematically developed by Lazarsfeld and Mustaţǎ
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Newton-Okounkov body

Example
1 if I = {Ik}k∈N is the family of ordinary powers of a

monomial ideal I then,

∆(I) = NP(I) := convex hull
({

a ∈ Nn ∣∣ xa ∈ I
})
,

which is the Newton polyhedron of I.
2 if I = {I(k)}k∈N is the family of symbolic powers of a

monomial ideal I then,

∆(I) = SP(I) :=
⋂

p∈maxAss(I)

NP(Q⊆p).

maxAss(I) denote the set of maximal associated primes of
I and Qp = R ∩ IRp for p ∈ maxAss(I). This is the symbolic
polyhedron of I, introduced by Cooper, Embree, Hà,
Hoefel.
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Newton-Okounkov body

Let I = (xy , yz, zx) = (x , y) ∩ (y , z) ∩ (z, x).

The symbolic polyhedron of
I.

The Newton polyhedron of I.
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Newton-Okounkov body

Remark
It can be shown that ∆(I) is a convex set. Thus, it follows from
the definition that

∆(I) =
⋃
k∈N

1
k

NP(Ik ).

In particular, ∆(I) is the closure of the limiting body

C(I) :=
⋃
k∈N

1
k

NP(Ik ),

of I. This object was named and investigated recently by
Camarneiro et. al (2021) ; the same asymptotic object was also
studied by Mustata (2002), Wolfe (2008), Mayes (2012) in
different contexts.
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Noetherian property of Rees algebras

1 Determining when the Rees algebra of a graded family of
ideals is Noetherian is a difficult problem.

2 Many examples existed to show that the Rees algebra of
the family of symbolic powers of an ideal needs not be
Noetherian (Cutkosky (1991), Huneke (1982) and Roberts
(1985)).

3 The symbolic Rees algebra of a monomial ideal is known
to be Noetherian (cf. Herzog-Hibi-Trung (2007)).

Focus : the Rees algebra of a graded family of monomial
ideals.
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Noetherian property of Rees algebras

Lemma
Let I = {Ik}k∈N and J be graded families of monomial ideals
such that I = J , where I denote the graded family {Ik}k∈N.
Then,

∆(I) = ∆(J ).

Theorem (Hà–Nguyễn)

Let I = {Ik}k∈N be a graded family of monomial ideals in R.
TFAE :

1 R(I) is Noetherian.
2 R(I) is Noetherian.
3 C(I) is a polyhedron.

4 There exists an integer c such that ∆(I) =
1
c

NP(Ic).
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Example

Example

Let I = (xy , yz, zx) = (x , y) ∩ (y , z) ∩ (z, x). Then

SP(I) =
1
2

NP(I(2)) and
1
2

NP(I(2)) =
1

2k
NP(I(2k)) for all k .
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Example

Example

Let I = (ab,bc, cd ,de,ea, fa, fb, fc, fd , fe) ⊆ k[a, . . . , f ] be the
edge ideal of a cone over a 5-cycle. Then, SP(I) has 17 vertices
(written as the columns of the following matrix) : 1/5 1/3 1/2 0 0 0 1/2 1 0 0 0 1 1 0 0 0 0

1/5 1/3 1/2 1/2 0 0 0 1 1 0 0 0 0 1 0 0 0
1/5 1/3 0 1/2 1/2 0 0 0 1 1 0 0 0 0 1 0 0
1/5 1/3 0 0 1/2 1/2 0 0 0 1 1 0 0 0 0 1 0
1/5 1/3 0 0 0 1/2 1/2 0 0 0 1 1 0 0 0 0 1
2/5 0 1/2 1/2 1/2 1/2 1/2 0 0 0 0 0 1 1 1 1 1

 .

In this example, NP(I(30)) = 30 SP(I), and c = 30 is the least
possible integer for NP(I(c)) = c SP(I) to hold.
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Example

Example
For a monomial ideal I and a real number r ≥ 0, the r -th real
power of I is

Ir := {xa ∣∣ a ∈ r NP(I) ∩ Nn}.

Let f : N→ R≥0 be a subadditive function ; i.e,
f (m) + f (n) ≥ f (m + n), ∀m,n ∈ N ; and suppose that

lim
k→∞

f (k)

k
∈ Q and is attained at some value k0. Consider

I = {Ik}k∈N, Ik = I f (k).

Then
C(I) =

⋃
k∈N

1
k

NP(Ik ) =
f (k0)

k0
NP(I),

hence, R(I) is a Noetherian algebra.

12 / 23



Example

Example
For a monomial ideal I and a real number r ≥ 0, the r -th real
power of I is

Ir := {xa ∣∣ a ∈ r NP(I) ∩ Nn}.

Let f : N→ R≥0 be a subadditive function ; i.e,
f (m) + f (n) ≥ f (m + n), ∀m,n ∈ N ; and suppose that

lim
k→∞

f (k)

k
∈ Q and is attained at some value k0. Consider

I = {Ik}k∈N, Ik = I f (k).

Then
C(I) =

⋃
k∈N

1
k

NP(Ik ) =
f (k0)

k0
NP(I),

hence, R(I) is a Noetherian algebra.

12 / 23



Example

Example
For a monomial ideal I and a real number r ≥ 0, the r -th real
power of I is

Ir := {xa ∣∣ a ∈ r NP(I) ∩ Nn}.

Let f : N→ R≥0 be a subadditive function ; i.e,
f (m) + f (n) ≥ f (m + n), ∀m,n ∈ N ; and suppose that

lim
k→∞

f (k)

k
∈ Q and is attained at some value k0. Consider

I = {Ik}k∈N, Ik = I f (k).

Then
C(I) =

⋃
k∈N

1
k

NP(Ik ) =
f (k0)

k0
NP(I),

hence, R(I) is a Noetherian algebra.

12 / 23



A Non-Example

Example

Let R = k[x , y ] and consider the graded family I = {Ik}k∈N with

Ik = (x , y)dk/2e+1 ⊆ R.

-2-2 -1.5-1.5 -1-1 -0.5-0.5 0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44

-1.5-1.5

-1-1

-0.5-0.5

0.50.5

11

1.51.5

22

2.52.5

33

00

∆(I) is the blue region
including the red
segment
C(I) is the blue region
only, which fails to be a
polyhedron, hence,
R(I) is not Noetherian.
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Noetherian property of Rees algebras

Remark
For any non-empty closed convex set P ⊆ Rn

≥0 absorbing Rn
≥0,

i.e., P + Rn
≥0 ⊆ P, there exists a graded family of monomial

ideals I such that ∆(I) = P. In particular, I = {Ik}k∈N where

Ik = 〈
{

xa ∣∣ a ∈ kP ∩ Zn}〉.

14 / 23



Newton-Okounkov Body and Algebraic Invariant

For graded family I = {Ik}k∈N of monomial ideals,
The formula "multiplicity = volume" :

e(I) := n! lim
k→∞

dim(R/Ik )

kn = n! covol(∆(I)).

where covol(∆(I)) is the volume of the complement of
∆(I). (Mustata 2002, Kaveh-Khovanskii 2014)
Study containment problem of a monomial ideal I through
SP(I) (Cooper et. al. 2016).
Study the asymptotic resurgence numbers through skew
valuation on NP(I) (Dipasquale et. al. 2018)
The Waldschmidt constant

α̂(I) := lim
k→∞

α(Ik )

k
= min{v1+· · ·+vn | (v1, . . . , vn) ∈ ∆(I)}.

where α(I) denote the minimal degree of generators of I
(Cooper et. al. 2016, Camarneiro et. al. 2021).
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Analytic Spread

Definition
Let I = {Ik}k∈N be a graded family of monomial ideals in R.
The analytic spread of I is defined to be :

`(I) := dimR(I)/mR(I).

When I is a filtration, `(I) = dimR(I)/mR(I) exists and is
bounded above by dim R (Cutkosky–Sarkar (2021)).
It turns out that `(I) = dimR(I)/mR(I) exists and is
bounded above by max{`(Ik )} when I is a graded family
(Hà–Nguyễn).
When I = {Ik}k∈N or I = {I(k)}k∈N, we use `(I) or `s(I) for
`(I).
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When I = {Ik}k∈N or I = {I(k)}k∈N, we use `(I) or `s(I) for
`(I).

16 / 23



Analytic Spread

Definition
Let I = {Ik}k∈N be a graded family of monomial ideals in R.
The analytic spread of I is defined to be :

`(I) := dimR(I)/mR(I).

When I is a filtration, `(I) = dimR(I)/mR(I) exists and is
bounded above by dim R (Cutkosky–Sarkar (2021)).
It turns out that `(I) = dimR(I)/mR(I) exists and is
bounded above by max{`(Ik )} when I is a graded family
(Hà–Nguyễn).
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Analytic spread

For a polyhedron P ⊆ Rn, let mdc(P) denote the maximum
dimension of a compact face in P.

Theorem (Hà–Nguyễn)

Let I be a Noetherian graded family of monomial ideals in R.
Then,

`(I) = mdc(∆(I)) + 1.

Question
Do we have the same result when ∆(I) is a rational
polyhedron?
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Corollary

Corollary
Let I and J be Noetherian graded families of monomial ideals
such that I = J . Then,

`(I) = `(J ).

Corollary
Let I be a monomial ideal.

1 `(I) = mdc(NP(I)) + 1 (Bivià-Ausina (2003)).
2 `s(I) = mdc(SP(I)) + 1.
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Example

Example

Let I = (xy , yz, zx) = (x , y) ∩ (y , z) ∩ (z, x). Then

`(I) = 3 and `s(I) = 2.

19 / 23



Analytic Spread and Growth of Numbers of Minimal
Generators

Definition

`∗(I) = min{t ∈ R
∣∣ µ(Ik ) = O(k t−1)}.

If I is Noetherian, we have `∗(I) = `(I).
It is not known in general if `∗(I) is always finite.
`∗(I) has been investigated by various authors
(Hoa–Kimura–Terai–Trung (2017), Dao–Montaño (2020)).

Example

Let I = {Ik}k∈N be a graded family of m-primary, m-full
monomial ideals (e.g, integrally closed). Suppose that ∆(I) is a
rational polyhedron. Then,

`∗(I) = mdc(∆(I)) + 1 = dim R.
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Generation Type and Veronese Degree

Fact

The symbolic Rees algebra Rs(I) =
⊕

n∈N I(n)tn is finitely
generated iff there exists d, such that I(dk) = (I(d))k∀k ≥ 1.

Definition
The standard Veronese degree of an ideal I is defined to be

svd(I) := inf{d | I(dk) = (I(d))k for all k ≥ 1}.

Theorem (Hà–Nguyễn)

Let I be a squarefree monomial ideal and suppose that
{v1, . . . , vr} are the vertices of SP(I). Let c be the least
common multiple of the denominators appearing in the
coordinates of v1, . . . , vr . Then

c ≤ svd(I) ≤ (`s(I)− 1)c.
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Generation Type and Veronese Degree

Definition
The symbolic generation type of I is defined to be the maximum
generating degree of Rs(I). That is,

sgt(I) := inf{d
∣∣ Rs(I) = R[It , I(2)t2, . . . , I(d)td ]}.

Theorem (Hà–Nguyễn)

Let I be a squarefree monomial ideal. Suppose that {v1, . . . , vr}
are the vertices of SP(I). Let di be the least common multiple of
the denominator of coordinates of vi , for i = 1, . . . , r . Set
D = max{d1, . . . ,dr}.

1 If D ≥ 2, then sgt(I) ≤ max{`s(I)D − 1,D}.
2 If D = 1, then sgt(I) ≤ max{`s(I)− 2,1}.
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Thank you for listening !
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